Photocatalytic reduction of CO2 by water was performed in the presence of a Ag/TiO2 catalyst under illumination by lamps with different wavelengths(254,365,and 400 nm).The yields of the main products(methane and metha...Photocatalytic reduction of CO2 by water was performed in the presence of a Ag/TiO2 catalyst under illumination by lamps with different wavelengths(254,365,and 400 nm).The yields of the main products(methane and methanol)were higher with the 254 nm lamp than with the 365 lamp while no products were observed with the 400 nm lamp.This was because the electron-hole generation rate increased with increasing energy of irradiation(decreasing wavelength)and there were higher densities of electron states at higher energies in TiO2. The increased efficiency of electron-hole generation with a shorter wavelength irradiation increased the efficiency of the catalyst.The energy of the electrons excited by visible light(400 nm)was too low for CO2 photocatalytic reduction.展开更多
基金supported by the Czech Ministry of Education,Youth and Sports(research project LA08050)the Grant Agency of theCzech Republic(GA 104/09/0694)
文摘Photocatalytic reduction of CO2 by water was performed in the presence of a Ag/TiO2 catalyst under illumination by lamps with different wavelengths(254,365,and 400 nm).The yields of the main products(methane and methanol)were higher with the 254 nm lamp than with the 365 lamp while no products were observed with the 400 nm lamp.This was because the electron-hole generation rate increased with increasing energy of irradiation(decreasing wavelength)and there were higher densities of electron states at higher energies in TiO2. The increased efficiency of electron-hole generation with a shorter wavelength irradiation increased the efficiency of the catalyst.The energy of the electrons excited by visible light(400 nm)was too low for CO2 photocatalytic reduction.