Identification of the optimal operating conditions and evaluation of their robustness are critical issues for industrial processes.A standard procedure,for modelling a laboratory-scale wire-to-cylinder electrostatic p...Identification of the optimal operating conditions and evaluation of their robustness are critical issues for industrial processes.A standard procedure,for modelling a laboratory-scale wire-to-cylinder electrostatic precipitator and for guiding the research of the set point,is presented.The procedure consists of formulating a set of recommendations regarding the choice of parameter values for electrostatic precipitation.The experiments were carried out on a laboratory cylindrical precipitator,built by one of the authors,with samples of wood particles.The parameters considered are the applied high voltage U,the air flow F,and the quantity of dust in air m.Several"one-factor-at-a-time"followed by factorial composite design experiments were performed,based on the following three-step strategy:1)Identify the domain of variation of the variables;2)Determine the mathematical model of the process outcome;3)Validation of the math-ematical model and optimisation of the process.展开更多
基金supported by the Framework of a TASSILI Project,jointly financed by the French and Algerian Governments.
文摘Identification of the optimal operating conditions and evaluation of their robustness are critical issues for industrial processes.A standard procedure,for modelling a laboratory-scale wire-to-cylinder electrostatic precipitator and for guiding the research of the set point,is presented.The procedure consists of formulating a set of recommendations regarding the choice of parameter values for electrostatic precipitation.The experiments were carried out on a laboratory cylindrical precipitator,built by one of the authors,with samples of wood particles.The parameters considered are the applied high voltage U,the air flow F,and the quantity of dust in air m.Several"one-factor-at-a-time"followed by factorial composite design experiments were performed,based on the following three-step strategy:1)Identify the domain of variation of the variables;2)Determine the mathematical model of the process outcome;3)Validation of the math-ematical model and optimisation of the process.