W_(45)Cu_(55),Cr_(65)Cu_(35),and Cr_(32)W_(14)Cu_(54)alloys were obtained in order to study the mechanism of“smart response”of the structure of these alloys when using them as arc-resistant circuit-breakers.These al...W_(45)Cu_(55),Cr_(65)Cu_(35),and Cr_(32)W_(14)Cu_(54)alloys were obtained in order to study the mechanism of“smart response”of the structure of these alloys when using them as arc-resistant circuit-breakers.These alloys differ from industrial ones with frameless packing of Cr and W phases in the copper matrix.The alloy production method is based on the infiltration of copper melt into a mixture of non-compacted Cr and W powders under vibration exposure(80 Hz).The research results show an increase in the arc resistance of contacts when changing from“frame”packing of W to“frameless,”as well as the decisive role of Cr in the processes of self-dispersion of arc-resistant phases and passivation of W and Cu.Based on the obtained results,conclusions are drawn about the advantage of frameless packing of arc-resistant phases in copper and the reasons for the“smart behavior”of the structure of Cr-containing contacts in response to functional loads in the presence of oxygen and an inert atmosphere.展开更多
文摘W_(45)Cu_(55),Cr_(65)Cu_(35),and Cr_(32)W_(14)Cu_(54)alloys were obtained in order to study the mechanism of“smart response”of the structure of these alloys when using them as arc-resistant circuit-breakers.These alloys differ from industrial ones with frameless packing of Cr and W phases in the copper matrix.The alloy production method is based on the infiltration of copper melt into a mixture of non-compacted Cr and W powders under vibration exposure(80 Hz).The research results show an increase in the arc resistance of contacts when changing from“frame”packing of W to“frameless,”as well as the decisive role of Cr in the processes of self-dispersion of arc-resistant phases and passivation of W and Cu.Based on the obtained results,conclusions are drawn about the advantage of frameless packing of arc-resistant phases in copper and the reasons for the“smart behavior”of the structure of Cr-containing contacts in response to functional loads in the presence of oxygen and an inert atmosphere.