In the present paper, based on the two-phase model (Eulerian model), the two dimensional fluid flow liz air-stirred water systems is simulated, and the effect of interphase lift force on the fluid flow is specially d...In the present paper, based on the two-phase model (Eulerian model), the two dimensional fluid flow liz air-stirred water systems is simulated, and the effect of interphase lift force on the fluid flow is specially discussed. In the Eulerian two-phase model, gas and liquid phase are considered to be two different continuous fluids interacting with each other through the finite inter-phase areas. The exchange between the phases is represented by source terms in conversation equations. Turbulence is assumed to be a property of the liquid phase, k - ε model is used to describe the behavior of the liquid phase. The dispersion of phases due to turbulence is represented by introducing a diffusion term in mass consecrvation equation. The contribution of bubble movement to the turbulent energy and its dissipation rate is taken into accounted by adding extra volumetric source terms to the equations of turbulent enemy and its dissipation rate. The comparison between the mathematical simulation and experiment data indicates that the interphase lift force has a big effect on the flow behavior, and considering both drug force and lift force as interphase forces is important to accurately simulate the gas-water two-phase fluid flow in air-stirred systems. The interphase lift force makes bubbles move away from the centerline, the gas concentration is decreased near the centerline, and increased near the wall. The lift force is smaller than drug force at the same place, especially far away from the centerline.展开更多
文摘In the present paper, based on the two-phase model (Eulerian model), the two dimensional fluid flow liz air-stirred water systems is simulated, and the effect of interphase lift force on the fluid flow is specially discussed. In the Eulerian two-phase model, gas and liquid phase are considered to be two different continuous fluids interacting with each other through the finite inter-phase areas. The exchange between the phases is represented by source terms in conversation equations. Turbulence is assumed to be a property of the liquid phase, k - ε model is used to describe the behavior of the liquid phase. The dispersion of phases due to turbulence is represented by introducing a diffusion term in mass consecrvation equation. The contribution of bubble movement to the turbulent energy and its dissipation rate is taken into accounted by adding extra volumetric source terms to the equations of turbulent enemy and its dissipation rate. The comparison between the mathematical simulation and experiment data indicates that the interphase lift force has a big effect on the flow behavior, and considering both drug force and lift force as interphase forces is important to accurately simulate the gas-water two-phase fluid flow in air-stirred systems. The interphase lift force makes bubbles move away from the centerline, the gas concentration is decreased near the centerline, and increased near the wall. The lift force is smaller than drug force at the same place, especially far away from the centerline.