期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Characterization and performance of the Apollon short-focal-area facility following its commissioning at 1 PW level
1
作者 K.Burdonov A.Fazzini +45 位作者 V.Lelasseux J.Albrecht P.Antici Y.Ayoul A.Beluze D.Cavanna T.Ceccotti M.Chabanis A.Chaleil S.N.Chen Z.Chen F.Consoli M.Cuciuc X.Davoine J.P.Delaneau E.d’Humieres J.-L.Dubois C.Evrard E.Filippov A.Freneaux P.Forestier-Colleoni L.Gremillet V.Horny L.Lancia l.lecherbourg N.Lebas A.Leblanc W.Ma L.Martin F.Negoita J.-L.Paillard D.Papadopoulos F.Perez S.Pikuz G.Qi F.Quere L.Ranc P.-A.Soderstrom M.Sciscio S.Sun S.Vallieres P.Wang W.Yao F.Mathieu P.Audebert J.Fuchs 《Matter and Radiation at Extremes》 SCIE CAS CSCD 2021年第6期12-25,共14页
We present the results of the first commissioning phase of the short-focal-length area of the Apollon laser facility(located in Saclay,France),which was performed with the first available laser beam(F2),scaled to a no... We present the results of the first commissioning phase of the short-focal-length area of the Apollon laser facility(located in Saclay,France),which was performed with the first available laser beam(F2),scaled to a nominal power of 1 PW.Under the conditions that were tested,this beam delivered on-target pulses of 10 J average energy and 24 fs duration.Several diagnostics were fielded to assess the performance of the facility.The on-target focal spot and its spatial stability,the temporal intensity profile prior to the main pulse,and the resulting density gradient formed at the irradiated side of solid targets have been thoroughly characterized,with the goal of helping users design future experiments.Emissions of energetic electrons,ions,and electromagnetic radiation were recorded,showing good laser-to-target coupling efficiency and an overall performance comparable to that of similar international facilities.This will be followed in 2022 by a further commissioning stage at the multipetawatt level. 展开更多
关键词 performance beam NOMINAL
下载PDF
Enhanced ion acceleration using the high-energy petawatt PETAL laser
2
作者 D.Raffestin l.lecherbourg +16 位作者 I.Lantúejoul B.Vauzour P.E.Masson-Laborde X.Davoine N.Blanchot J.L.Dubois X.Vaisseau E.d’Humières L.Gremillet A.Duval Ch.Reverdin B.Rosse G.Boutoux J.E.Ducret Ch.Rousseaux V.Tikhonchuk D.Batani 《Matter and Radiation at Extremes》 SCIE CAS CSCD 2021年第5期62-79,共18页
The high-energy petawatt PETAL laser system was commissioned at CEA’s Laser M´egajoule facility during the 2017–2018 period.This paper reports in detail on the first experimental results obtained at PETAL on en... The high-energy petawatt PETAL laser system was commissioned at CEA’s Laser M´egajoule facility during the 2017–2018 period.This paper reports in detail on the first experimental results obtained at PETAL on energetic particle and photon generation from solid foil targets,with special emphasis on proton acceleration.Despite a moderately relativistic(<1019 W/cm^(2))laser intensity,proton energies as high as 51 MeV have been measured significantly above those expected from preliminary numerical simulations using idealized interaction conditions.Multidimensional hydrodynamic and kinetic simulations,taking into account the actual laser parameters,show the importance of the energetic electron production in the extended low-density preplasma created by the laser pedestal.This hot-electron generation occurs through two main pathways:(i)stimulated backscattering of the incoming laser light,triggering stochastic electron heating in the resulting counterpropagating laser beams;(ii)laser filamentation,leading to local intensifications of the laser field and plasma channeling,both of which tend to boost the electron acceleration.Moreover,owing to the large(∼100μm)waist and picosecond duration of the PETAL beam,the hot electrons can sustain a high electrostatic field at the target rear side for an extended period,thus enabling efficient target normal sheath acceleration of the rear-side protons.The particle distributions predicted by our numerical simulations are consistent with the measurements. 展开更多
关键词 ACCELERATION high energy
下载PDF
Design and current progress of the Apollon 10 PW project 被引量:2
3
作者 J.P.Zou C.Le Blanc +23 位作者 D.N.Papadopoulos G.Chériaux P.Georges G.Mennerat F.Druon l.lecherbourg A.Pellegrina P.Ramirez F.Giambruno A.Fréneaux F.Leconte D.Badarau J.M.Boudenne D.Fournet T.Valloton J.L.Paillard J.L.Veray M.Pina P.Monot J.P.Chambaret P.Martin F.Mathieu P.Audebert F.Amiranoff 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2015年第1期32-35,共4页
The objective of the Apollon project is the generation of 10 PW peak power pulses of 15 fs at 1 shot/minute. In this paper the Apollon facility design, the technological challenges and the current progress of the proj... The objective of the Apollon project is the generation of 10 PW peak power pulses of 15 fs at 1 shot/minute. In this paper the Apollon facility design, the technological challenges and the current progress of the project will be presented. 展开更多
关键词 TITANIUM LASERS PW class facilities
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部