期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Comparison of Field Measurements of CH_4 Emission from Rice Cultivation in Nanjing, China and in Texas, USA 被引量:3
1
作者 黄耀 蒋静艳 +4 位作者 宗良纲 Ronald l.sass Frank M.Fisher 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第6期1121-1130,共10页
Field measurements of methane emission from rice paddies were made in Nanjing, China and in Texas, USA, respectively. Soil temperature at approximately 10 cm depth of the flooded soils was automatically recorded. Abov... Field measurements of methane emission from rice paddies were made in Nanjing, China and in Texas, USA, respectively. Soil temperature at approximately 10 cm depth of the flooded soils was automatically recorded. Aboveground biomass of rice crop was measured approximately every 10 days in Nanjing and every other week in Texas. Seasonal variation of soil temperature in Nanjing was quite wide with a magnitude of 15.3°C and that in Texas was narrow with a magnitude of 2.9°C. Analysis of methane emission fluxes against soil temperature and rice biomass production demonstrated that the seasonal course of methane emission in Nanjing was mostly attributed to soil temperature changes, while that in Texas was mainly related to rice biomass production. We concluded that under the permanent flooding condition, the seasonal trend of methane emission would be determined by the soil temperature where there was a wide variation of soil temperature, and the seasonal trend would be mainly determined by rice biomass production if there are no additional organic matter inputs and the variation of soil temperature over the rice growing season is small. Key words CH4 emission - Rice paddies - Rice biomass production - Soil temperature This work was supported by grants from TECO/NASA, the United States, the Hundred Talents Program, Chinese Academy of Sciences and the National Key Basic Research Development Foundation (approved # G1999011805), China. 展开更多
关键词 CH4 emission Rice paddies Rice biomass production Soil temperature
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部