期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
NANOSIZE EFFECT IN GRAIN BOUNDARY MIGRATION OF COPPER 被引量:2
1
作者 l.zhou X.Q.Wei +1 位作者 N.G.Zhou D.G.Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第1期11-15,共5页
Molecular dynamics simulations of high temperature annealing of copper bicrystals have been carried out. The bicrystals have planar grain boundaries, and the gain size varies in nano range. An EAM (embedded atom metho... Molecular dynamics simulations of high temperature annealing of copper bicrystals have been carried out. The bicrystals have planar grain boundaries, and the gain size varies in nano range. An EAM (embedded atom method) potential of FS type is used for calculating the interatomic forces. The results show that in nanocrystalline copper, GB migration driven by inter-GB reaction can take place. A critical grain size is identified, below which the inter-GB reaction becomes strong enough to trigger GB motion, which accelerates rapidly and leads to annihilation of the grain boundaries. The critical size is found to be 16 atomic radii. A "through intermediate grain mechanism" is identified for the nano-grain boundary motion observed, which is never reported for GB migrations of conventional polycrystalline metals. 展开更多
关键词 grain boundary migration nanocrystal COPPER
下载PDF
汶川—芦山地震之间地震空区及邻区的微震时空分布特征及指示意义
2
作者 C.L.Wang C.T.Liang +4 位作者 K.Deng Y.L.Huang l.zhou 王朝亮(译) 梁春涛(校) 《世界地震译丛》 2019年第4期331-350,共20页
在龙门山西南段,汶川和芦山两次地震之间地震空区产生的物理机制及其未来的地震活动性仍然是亟需进一步研究的问题。现有研究结果也无法完全解释地震空区挤压应变/应力的调节模式。我们使用Match and Locate方法获取了2015年5月至12月... 在龙门山西南段,汶川和芦山两次地震之间地震空区产生的物理机制及其未来的地震活动性仍然是亟需进一步研究的问题。现有研究结果也无法完全解释地震空区挤压应变/应力的调节模式。我们使用Match and Locate方法获取了2015年5月至12月时段内空区及邻区的详细的背景地震目录,完备性震级为M_c=0.2,微震的时空分布特征凸显了小震级事件的丛集(簇)特征。在深度域上,微震在空区两端的优势深度存在明显差异,南端深于北端,表明空区作为汶川和芦山两次地震破裂的转换带。我们的微震探测结果表明空区存在明显的微震"亏空",否定了其通过微地震释放累积应力的调节模式。我们发现该区域内,不同震级范围内的背景地震活动性都与降雨变化率存在明显的反相关关系。在夏、秋季节,地震活动性极值滞后于降水极值1~2个月,库仑模型计算表明增强的地震活动性很可能被浅地表含水量的减少所触发,季节性降水在一定程度上调节了背景地震活动性。相较于震级大于3.0的背景地震,背景微震对降水的变化具有更敏感的响应,这可能由其更短的起始周期所致。 展开更多
关键词 时空分布特征 地震空区 微震 芦山 汶川 邻区 地震活动性 调节模式
下载PDF
太阳辐射驱动气候变化的泥炭氧同位素证据 被引量:36
3
作者 洪业汤 刘东生 +10 位作者 姜洪波 l.zhou J.Beer 朱泳煊 冷雪天 李汉鼎 秦小光 洪冰 王羽 林庆华 曾毅强 《中国科学(D辑)》 CSCD 1999年第6期527-531,共5页
已证明太阳辐射水平变化的历史可从树轮14 C含量变化的历史来认识 .所报道的 5 0 0 0a高分辨的泥炭植物纤维素氧同位素 (δ18O)气候代用记录所指示的气候变化对太阳辐射变化的响应关系 .结果表明 ,过去 5 0 0 0a中 34次急速的气候冷暖变... 已证明太阳辐射水平变化的历史可从树轮14 C含量变化的历史来认识 .所报道的 5 0 0 0a高分辨的泥炭植物纤维素氧同位素 (δ18O)气候代用记录所指示的气候变化对太阳辐射变化的响应关系 .结果表明 ,过去 5 0 0 0a中 34次急速的气候冷暖变化 ,以及气候变化的 86 ,1 0 1 ,1 1 0 ,1 2 7,1 32 ,1 40 ,1 5 5 ,2 0 7,2 45 ,31 1 ,82 0和 1 0 5 0a等周期 ,都与太阳辐射变化和太阳辐射变化的周期有比较好的一对一的响应 .因此 。 展开更多
关键词 气候变化 泥炭 氧同位素 太阳活动 太阳辐射
原文传递
Future Physics Programme of BESⅢ 被引量:539
4
作者 M.Ablikim M.N.Achasov +486 位作者 P.Adlarson S.Ahmed M.Albrecht M.Alekseev A.Amoroso F.F.An Q.An Y.Bai O.Bakina R.Baldini Ferroli Y.Ban K.Begzsuren J.V.Bennett N.Berger M.Bertani D.Bettoni F.Bianchi J Biernat J.Bloms I.Boyko R.A.Briere L.Calibbi H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin J.Chai J.F.Chang W.L.Chang J.Charles G.Chelkov Chen G.Chen H.S.Chen J.C.Chen M.L.Chen S.J.Chen Y.B.Chen H.Y.Cheng W.Cheng G.Cibinetto F.Cossio X.F.Cui H.L.Dai J.P.Dai X.C.Dai A.Dbeyssi D.Dedovich Z.Y.Deng A.Denig Denysenko M.Destefanis S.Descotes-Genon F.De Mori Y.Ding C.Dong J.Dong L.Y.Dong M.Y.Dong Z.L.Dou S.X.Du S.I.Eidelman J.Z.Fan J.Fang S.S.Fang Y.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng M.Fritsch C.D.Fu Y.Fu Q.Gao X.L.Gao Y.Gao Y.Gao Y.G.Gao Z.Gao B.Garillon I.Garzia E.M.Gersabeck A.Gilman K.Goetzen L.Gong W.X.Gong W.Gradl M.Greco L.M.Gu M.H.Gu Y.T.Gu A.Q.Guo F.K.Guo L.B.Guo R.P.Guo Y.P.Guo A.Guskov S.Han X.Q.Hao F.A.Harris K.L.He F.H.Heinsius T.Held Y.K.Heng Y.R.Hou Z.L.Hou H.M.Hu J.F.Hu T.Hu Y.Hu G.S.Huang J.S.Huang X.T.Huang X.Z.Huang Z.L.Huang N.Huesken T.Hussain W.Ikegami Andersson W.Imoehl M.Irshad Q.Ji Q.P.Ji X.B.Ji X.L.Ji H.L.Jiang X.S.Jiang X.Y.Jiang J.B.Jiao Z.Jiao D.P.Jin S.Jin Y.Jin T.Johansson N.Kalantar-Nayestanaki X.S.Kang R.Kappert M.Kavatsyuk B.C.Ke I.K.Keshk T.Khan A.Khoukaz P.Kiese R.Kiuchi R.Kliemt L.Koch O.B.Kolcu B.Kopf M.Kuemmel M.Kuessner A.Kupsc M.Kurth M.G.Kurth W.Kuhn J.S.Lange P.Larin L.Lavezzi H.Leithoff T.Lenz C.Li Cheng Li D.M.Li F.Li F.Y.Li G.Li H.B.Li H.J.Li J.C.Li J.W.Li Ke Li L.K.Li Lei Li P.L.Li P.R.Li Q.Y.Li W.D.Li W.G.Li X.H.Li X.L.Li X.N.Li X.Q.Li Z.B.Li H.Liang H.Liang Y.F.Liang Y.T.Liang G.R.Liao L.Z.Liao J.Libby C.X.Lin D.X.Lin Y.J.Lin B.Liu B.J.Liu C.X.Liu D.Liu D.Y.Liu F.H.Liu Fang Liu Feng Liu H.B.Liu H.M.Liu Huanhuan Liu Huihui Liu J.B.Liu J.Y.Liu K.Y.Liu Ke Liu Q.Liu S.B.Liu T.Liu X.Liu X.Y.Liu Y.B.Liu Z.A.Liu Zhiqing Liu Y.F.Long X.C.Lou H.J.Lu J.D.Lu J.G.Lu Y.Lu Y.P.Lu C.L.Luo M.X.Luo P.W.Luo T.Luo X.L.Luo S.Lusso X.R.Lyu F.C.Ma H.L.Ma L.L.Ma M.M.Ma Q.M.Ma X.N.Ma X.X.Ma X.Y.Ma Y.M.Ma F.E.Maas M.Maggiora S.Maldaner S.Malde Q.A.Malik A.Mangoni Y.J.Mao Z.P.Mao S.Marcello Z.X.Meng J.G.Messchendorp G.Mezzadri J.Min T.J.Min R.E.Mitchell X.H.Mo Y.J.Mo C.Morales Morales N.Yu.Muchnoi H.Muramatsu A.Mustafa S.Nakhoul Y.Nefedov F.Nerling I.B.Nikolaev Z.Ning S.Nisar S.L.Niu S.L.Olsen Q.Ouyang S.Pacetti Y.Pan M.Papenbrock P.Patteri M.Pelizaeus H.P.Peng K.Peters A.A.Petrov J.Pettersson J.L.Ping R.G.Ping A.Pitka R.Poling V.Prasad M.Qi T.Y.Qi S.Qian C.F.Qiao N.Qin X.P.Qin X.S.Qin Z.H.Qin J.F.Qiu S.Q.Qu K.H.Rashid C.F.Redmer M.Richter M.Ripka A.Rivetti V.Rodin M.Rolo G.Rong J.L.Rosner Ch.Rosner M.Rump A.Sarantsev M.Savrie K.Schoenning W.Shan X.Y.Shan M.Shao C.P.Shen P.X.Shen X.Y.Shen H.Y.Sheng X.Shi X.D Shi J.J.Song Q.Q.Song X.Y.Song S.Sosio C.Sowa S.Spataro F.F.Sui G.X.Sun J.F.Sun L.Sun S.S.Sun X.H.Sun Y.J.Sun Y.K Sun Y.Z.Sun Z.J.Sun Z.T.Sun Y.T Tan C.J.Tang G.Y.Tang X.Tang V.Thoren B.Tsednee I.Uman B.Wang B.L.Wang C.W.Wang D.Y.Wang H.H.Wang K.Wang L.L.Wang L.S.Wang M.Wang M.Z.Wang Wang Meng P.L.Wang R.M.Wang W.P.Wang X.Wang X.F.Wang X.L.Wang Y.Wang Y.F.Wang Z.Wang Z.G.Wang Z.Y.Wang Zongyuan Wang T.Weber D.H.Wei P.Weidenkaff H.W.Wen S.P.Wen U.Wiedner G.Wilkinson M.Wolke L.H.Wu L.J.Wu Z.Wu L.Xia Y.Xia S.Y.Xiao Y.J.Xiao Z.J.Xiao Y.G.Xie Y.H.Xie T.Y.Xing X.A.Xiong Q.L.Xiu G.F.Xu L.Xu Q.J.Xu W.Xu X.P.Xu F.Yan L.Yan W.B.Yan W.C.Yan Y.H.Yan H.J.Yang H.X.Yang L.Yang R.X.Yang S.L.Yang Y.H.Yang Y.X.Yang Yifan Yang Z.Q.Yang M.Ye M.H.Ye J.H.Yin Z.Y.You B.X.Yu C.X.Yu J.S.Yu C.Z.Yuan X.Q.Yuan Y.Yuan A.Yuncu A.A.Zafar Y.Zeng B.X.Zhang B.Y.Zhang C.C.Zhang D.H.Zhang H.H.Zhang H.Y.Zhang J.Zhang J.L.Zhang J.Q.Zhang J.W.Zhang J.Y.Zhang J.Z.Zhang K.Zhang L.Zhang S.F.Zhang T.J.Zhang X.Y.Zhang Y.Zhang Y.H.Zhang Y.T.Zhang Yang Zhang Yao Zhang Yi Zhang Yu Zhang Z.H.Zhang Z.P.Zhang Z.Q.Zhang Z.Y.Zhang G.Zhao J.W.Zhao J.Y.Zhao J.Z.Zhao Lei Zhao Ling Zhao M.G.Zhao Q.Zhao S.J.Zhao T.C.Zhao Y.B.Zhao Z.G.Zhao A.Zhemchugov B.Zheng J.P.Zheng Y.Zheng Y.H.Zheng B.Zhong l.zhou L.P.Zhou Q.Zhou X.Zhou X.K.Zhou Xingyu Zhou Xiaoyu Zhou Xu Zhou A.N.Zhu J.Zhu J.Zhu K.Zhu K.J.Zhu S.H.Zhu W.J.Zhu X.L.Zhu Y.C.Zhu Y.S.Zhu Z.A.Zhu J.Zhuang B.S.Zou J.H.Zou 《Chinese Physics C》 SCIE CAS CSCD 2020年第4期I0001-I0004,1-102,共106页
There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESⅢ and B fac... There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESⅢ and B factories, and the observation of an intriguing proton-antiproton threshold enhancement and the possibly related X(1835) meson state at BESⅢ, as well as the threshold measurements of charm mesons and charm baryons. We present a detailed survey of the important topics in tau-charm physics and hadron physics that can be further explored at BESⅢ during the remaining operation period of BEPCⅡ. This survey will help in the optimization of the data-taking plan over the coming years, and provides physics motivation for the possible upgrade of BEPCⅡ to higher luminosity. 展开更多
关键词 MESON HADRON optimization
原文传递
A hidden precipitation scenario of theθ’-phase in Al-Cu alloys 被引量:7
5
作者 l.zhou C.L.Wu +4 位作者 P.Xie F.J.Niu W.Q.Ming K.Du J.H.Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第16期126-138,共13页
Al-Cu binary alloys are important and interesting industry materials.Up to date,the formation mechanisms of the key strengthening precipitates,namedθ’-phase,in the alloys are still controversial.Here,we report that ... Al-Cu binary alloys are important and interesting industry materials.Up to date,the formation mechanisms of the key strengthening precipitates,namedθ’-phase,in the alloys are still controversial.Here,we report that for non-deformed bulk Al-Cu alloys theθ’-phase actually has its own direct precursors that can form only at elevated aging temperature(>ca.200℃).These high-temperature precursors have the same plate-like morphology as theθ’-phase precipitates but rather different structures.Atomicresolution imaging reveals that they have a tetragonal structure with a=0.405 nm and c=1.213 nm,and an average composition of Al_(5-x)Cu_(1+x)(0≤x<1),being fully coherent with the Al-lattice.This precursor phase may initiate with a composition of Al5 Cu and evolve locally towards Al_(4)Cu_(2)in composition,eventually leading to a consequent structural transformation into theθ’-phase(Al4 Cu2=Al2 Cu).There are evidences that because of their genetic links in structure,such a high-temperature precursor may transform to theθ’-phase without having to change their morphology and interface structure.Our study reveals a well-defined and previously hidden precipitation scenario for theθ’-phase to form in Al-Cu alloys at an elevated aging temperature. 展开更多
关键词 AlCu alloy AGE-HARDENING PRECIPITATION Electron microscopy
原文传递
Finite Element Prediction of the Thermal Conductivity of GNP/Al Composites 被引量:1
6
作者 X.S.Yang l.zhou +4 位作者 K.Y.Liu Z.Y.Liu Q.Z.Wang B.L.Xiao Z.Y.Ma 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2022年第5期825-838,共14页
A 3 D multi-scale finite element model was developed to predict the effective thermal conductivity of graphene nanoplatelet(GNP)/Al composites.The factors influencing the effective thermal conductivity of the GNP/Al c... A 3 D multi-scale finite element model was developed to predict the effective thermal conductivity of graphene nanoplatelet(GNP)/Al composites.The factors influencing the effective thermal conductivity of the GNP/Al composites were investigated,including the orientation,shape,aspect ratio,configuration and volume fraction of GNPs.The results show that GNPs shape has a little influence on the thermal conductivity of GNP/Al composites,and composites with elliptic GNPs have the highest thermal conductivity.In addition,with increasing the aspect ratio of GNPs,the thermal conductivity of GNP/Al composites increases and finally tends to be stable.The GNPs configuration strongly influences the thermal conductivity of GNP/Al composites,and the thermal conductivity of the composites with layered GNPs is the highest among the five configurations.The effective thermal conductivity is sensitive to volume fraction of GNPs.Ideally,when the volume fraction of layered GNPs reaches 1.54%,the thermal conductivity of GNP/Al composites is as high as 400 W/m K.The findings of this study could provide a good theoretical basis for designing high thermal conductivity GNP/Al composites. 展开更多
关键词 Multi-scale finite element model Thermal conductivity GNP/Al composites SHAPE Aspect ratio CONFIGURATION
原文传递
Search for electron-antineutrinos associated with gravitational-wave events GW150914,GW151012,GW151226,GW170104,GW170608,GW170814,and GW170817 at Daya Bay 被引量:1
7
作者 F.P.An A.B.Balantekin +183 位作者 H.R.Band M.Bishai S.Blyth G.F.Cao J.Cao J.F.Chang Y.Chang H.S.Chen S.M.Chen Y.Chen Y.X.Chen J.Cheng Z.K.Cheng J.J.Cherwinka M.C.Chu J.P.Cummings O.Dalager F.S.Deng Y.Y.Ding M.V.Diwan T.Dohnal J.Dove M.Dvorak D.A.Dwyer J.P.Gallo M.Gonchar G.H.Gong H.Gong W.Q.Gu J.Y.Guo L.Guo X.H.Guo Y.H.Guo Z.Guo R.W.Hackenburg S.Hans M.He K.M.Heeger Y.K.Heng A.Higuera Y.K.Hor Y.B.Hsiung B.Z.Hu J.R.Hu T.Hu Z.J.Hu H.X.Huang X.T.Huang Y.B.Huang P.Huber D.E.Jaffe K.L.Jen X.L.Ji X.P.Ji R.A.Johnson D.Jones L.Kang S.H.Kettell S.Kohn M.Kramer T.J.Langford J.Lee J.H.C.Lee R.T.Lei R.Leitner J.K.C.Leung F.Li J.J.Li Q.J.Li S.Li S.C.Li W.D.Li X.N.Li X.Q.Li Y.F.Li Z.B.Li H.Liang C.J.Lin G.L.Lin S.Lin J.J.Ling J.M.Link L.Littenberg B.R.Littlejohn J.C.Liu J.L.Liu C.Lu H.Q.Lu J.S.Lu K.B.Luk X.B.Ma X.Y.Ma Y.Q.Ma C.Marshall D.A.Martinez Caicedo K.T.MeDonald R.D.McKeown Y.Meng J.Napolitano D.Naumov E.Naumova J.P.Ochoa-Ricoux A.OIshevskiy H.-R.Pan J.Park S.Patton J.C.Peng C.S.J.Pun F.Z.Qi M.Qi X.Qian N.Raper J.Ren C.Morales Reveco R.Rosero B.Roskovec X.C.Ruan H.Steiner J.L.Sun T.Tmej K.Treskov W.-H.Tse C.E.Tull B.Viren V.Vorobel C.H.Wang J.Wang M.Wang N.Y.Wang R.G.Wang W.Wang W.Wang X.Wang Y.Wang Y.F.Wang Z.Wang Z.Wang Z.M.Wang H.Y.Wei L.H.Wei L.J.Wen K.Whisnant C.G.White H.L.H.Wong E.Worcester D.R.Wu F.L.Wu Q.Wu W.J.Wu D.M.Xia Z.Q.Xie Z.Z.Xing J.L.Xu T.Xu T.Xue C.G.Yang L.Yang Y.Z.Yang H.F.Yao M.Ye M.Yeh B.L.Young H.Z.Yu Z.Y.Yu B.B.Yue S.Zeng Y.Zeng L.Zhan C.Zhang F.Y.Zhang H.H.Zhang J.W.Zhang Q.M.Zhang X.T.Zhang Y.M.Zhang Y.X.Zhang Y.Y.Zhang Z.J.Zhang Z.P.Zhang Z.Y.Zhang J.Zhao l.zhou H.L.Zhuang J.H.Zou 《Chinese Physics C》 SCIE CAS CSCD 2021年第5期190-201,共12页
The establishment of a possible connection between neutrino emission and gravitational-wave(GW)bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge.In t... The establishment of a possible connection between neutrino emission and gravitational-wave(GW)bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge.In the Daya Bay experiment,using the data collected from December 2011 to August 2017,a search was per-formed for electron-antineutrino signals that coincided with detected GW events,including GW150914,GW151012,GW151226,GW170104,GW170608,GW 170814,and GW 170817.We used three time windows of±10,±500,and±1000 s relative to the occurrence of the GW events and a neutrino energy range of 1.8 to 100 MeV to search for correlated neutrino candidates.The detected electron-antineutrino candidates were consistent with the expected background rates for all the three time windows.Assuming monochromatic spectra,we found upper limits(90%confidence level)of the electron-antineutrino fluence of(1.13-2.44)×10^(11)cm^(-2)at 5 MeV to 8.0×10^(7)cm^(-2)at 100 MeV for the three time w indows.Under the assumption of a Fermi-Dirac spectrum,the upper limits were found to be(5.4-7.0)×10^(9)cm^(2)for the three time windows. 展开更多
关键词 grav itational waves electron-antineutrinos FLUENCE upper limit
原文传递
Observation of e^+e^-→D_s^+■^((*)0)K^- and study of the P-wave D_s mesons
8
作者 M.Ablikim M.N.Achasov +446 位作者 S.Ahmed M.Albrecht M.Alekseev A.Amoroso F.F.An Q.An Y.Bai O.Bakina R.Baldini Ferroli Y.Ban K.Begzsuren D.W.Bennett J.V.Bennett N.Berger M.Bertani D.Bettoni F.Bianchi I.Boyko R.A.Briere H.Cai X.Cai A.Calcaterra G.F.Cao S.A.Cetin J.Chai J.F.Chang W.L.Chang G.Chelkov G.Chen H.S.Chen J.C.Chen M.L.Chen S.J.Chen Y.B.Chen W.S.Cheng G.Cibinetto F.Cossio H.L.Dai J.P.Dai A.Dbeyssi D.Dedovich Z.Y.Deng A.Denig I.Denysenko M.Destefanis F.De Mori Y.Ding C.Dong J.Dong L.Y.Dong M.Y.Dong Z.L.Dou S.X.Du J.Z.Fan J.Fang S.S.Fang Y.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng M.Fritsch C.D.Fu Y.Fu Q.Gao X.L.Gao Y.N.Gao Y.G.Gao Z.Gao B.Garillon I.Garzia A.Gilman K.Goetzen L.Gong W.X.Gong W.Gradl M.Greco L.M.Gu M.H.Gu S.Gu Y.T.Gu A.Q.Guo L.B.Guo R.P.Guo Y.P.Guo A.Guskov Z.Haddadi S.Han X.Q.Hao F.A.Harris K.L.He F.H.Heinsius T.Held Y.K.Heng Z.L.Hou H.M.Hu J.F.Hu T.Hu Y.Hu G.S.Huang J.S.Huang X.T.Huang X.Z.Huang Z.L.Huang N.Huesken T.Hussain W.Ikegami Andersson W.Imoehl M.Irshad Q.Ji Q.P.Ji X.B.Ji X.L.Ji H.L.Jiang X.S.Jiang X.Y.Jiang J.B.Jiao Z.Jiao D.P.Jin S.Jin Y.Jin T.Johansson N.Kalantar-Nayestanaki X.S.Kang M.Kavatsyuk B.C.Ke I.K.Keshk T.Khan A.Khoukaz P.Kiese R.Kiuchi R.Kliemt L.Koch O.B.Kolcu B.Kopf M.Kuemmel M.Kuessner A.Kupsc M.Kurth W.Kühn J.S.Lange P.Larin L.Lavezzi H.Leithoff C.Li Cheng Li D.M.Li F.Li F.Y.Li G.Li H.B.Li H.J.Li J.C.Li J.W.Li Ke Li L.K.Li Lei Li P.L.Li P.R.Li Q.Y.Li W.D.Li W.G.Li X.L.Li X.N.Li X.Q.Li Z.B.Li H.Liang Y.F.Liang Y.T.Liang G.R.Liao L.Z.Liao J.Libby C.X.Lin D.X.Lin B.Liu B.J.Liu C.X.Liu D.Liu D.Y.Liu F.H.Liu Fang Liu Feng Liu H.B.Liu H.L Liu H.M.Liu Huanhuan Liu Huihui Liu J.B.Liu J.Y.Liu K.Y.Liu Kai Liu Ke Liu Q.Liu S.B.Liu X.Liu Y.B.Liu Z.A.Liu Zhiqing Liu Y.F.Long X.C.Lou H.J.Lu J.D.Lu J.G.Lu Y.Lu Y.P.Lu C.L.Luo M.X.Luo P.W.Luo T.Luo X.L.Luo S.Lusso X.R.Lyu F.C.Ma H.L.Ma L.L.Ma M.M.Ma Q.M.Ma X.N.Ma X.X.Ma X.Y.Ma Y.M.Ma F.E.Maas M.Maggiora S.Maldaner Q.A.Malik A.Mangoni Y.J.Mao Z.P.Mao S.Marcello Z.X.Meng J.G.Messchendorp G.Mezzadri J.Min T.J.Min R.E.Mitchell X.H.Mo Y.J.Mo C.Morales Morales N.Yu.Muchnoi H.Muramatsu A.Mustafa S.Nakhoul Y.Nefedov F.Nerling I.B.Nikolaev Z.Ning S.Nisar S.L.Niu S.L.Olsen Q.Ouyang S.Pacetti Y.Pan M.Papenbrock P.Patteri M.Pelizaeus H.P.Peng K.Peters J.Pettersson J.L.Ping R.G.Ping A.Pitka R.Poling V.Prasad M.Qi T.Y.Qi S.Qian C.F.Qiao N.Qin X.S.Qin Z.H.Qin J.F.Qiu S.Q.Qu K.H.Rashid C.F.Redmer M.Richter M.Ripka M.Rolo G.Rong Ch.Rosner M.Rump A.Sarantsev M.Savrié K.Schoenning W.Shan X.Y.Shan M.Shao C.P.Shen P.X.Shen X.Y.Shen H.Y.Sheng X.Shi J.J.Song X.Y.Song S.Sosio C.Sowa S.Spataro F.F.Sui G.X.Sun J.F.Sun L.Sun S.S.Sun X.H.Sun Y.J.Sun Y.K Sun Y.Z.Sun Z.J.Sun Z.T.Sun Y.T Tan C.J.Tang G.Y.Tang X.Tang M.Tiemens B.Tsednee I.Uman B.Wang B.L.Wang C.W.Wang D.Y.Wang H.H.Wang K.Wang L.L.Wang L.S.Wang M.Wang Meng Wang P.Wang P.L.Wang R.M.Wang W.P.Wang X.F.Wang Y.Wang Y.F.Wang Z.Wang Z.G.Wang Z.Y.Wang Zongyuan Wang T.Weber D.H.Wei P.Weidenkaff S.P.Wen U.Wiedner M.Wolke L.H.Wu L.J.Wu Z.Wu L.Xia Y.Xia Y.J.Xiao Z.J.Xiao Y.G.Xie Y.H.Xie X.A.Xiong Q.L.Xiu G.F.Xu L.Xu Q.J.Xu W.Xu X.P.Xu F.Yan L.Yan W.B.Yan W.C.Yan Y.H.Yan H.J.Yang H.X.Yang L.Yang R.X.Yang S.L.Yang Y.H.Yang Y.X.Yang Yifan Yang Z.Q.Yang M.Ye M.H.Ye J.H.Yin Z.Y.You B.X.Yu C.X.Yu J.S.Yu C.Z.Yuan Y.Yuan A.Yuncu A.A.Zafar Y.Zeng B.X.Zhang B.Y.Zhang C.C.Zhang D.H.Zhang H.H.Zhang H.Y.Zhang J.Zhang J.L.Zhang J.Q.Zhang J.W.Zhang J.Y.Zhang J.Z.Zhang K.Zhang L.Zhang S.F.Zhang T.J.Zhang X.Y.Zhang Y.Zhang Y.H.Zhang Y.T.Zhang Yang Zhang Yao Zhang Yu Zhang Z.H.Zhang Z.P.Zhang Z.Y.Zhang G.Zhao J.W.Zhao J.Y.Zhao J.Z.Zhao Lei Zhao Ling Zhao M.G.Zhao Q.Zhao S.J.Zhao T.C.Zhao Y.B.Zhao Z.G.Zhao A.Zhemchugov B.Zheng J.P.Zheng Y.H.Zheng B.Zhong l.zhou Q.Zhou X.Zhou X.K.Zhou X.R.Zhou Xiaoyu Zhou Xu Zhou A.N.Zhu J.Zhu J.Zhu K.Zhu K.J.Zhu S.H.Zhu X.L.Zhu Y.C.Zhu Y.S.Zhu Z.A.Zhu J.Zhuang B.S.Zou J.H.Zou 《Chinese Physics C》 SCIE CAS CSCD 2019年第3期5-16,共12页
Studies of e^+e~→D_s^+■^((*)0)K^-and the P-wave charmed-strange mesons are performed based on an e^+e^-collision data sample corresponding to an integrated luminosity of 567 pb^(-1) collected with the BESIII detecto... Studies of e^+e~→D_s^+■^((*)0)K^-and the P-wave charmed-strange mesons are performed based on an e^+e^-collision data sample corresponding to an integrated luminosity of 567 pb^(-1) collected with the BESIII detector at s^(1/2)=4.600 GeV. The processes of e^+e^-→D_s^+■^(*0)K^- and D_s^+■~0K^- are observed for the first time and are found to be dominated by the modes D_s^+D_(s1)(2536)^-and D_s^+D_(s2)~*(2573)^-, respectively. The Born cross sections are measured to be σ~B(e^+e^-→D_s^+■^(*0)K^-) =(10.1±2.3±0.8) pb and σ~B(e^+e^-→D_s^+■~0K^-) =(19.4±2.3± 1.6) pb, and the products of Born cross section and the decay branching fraction are measured to be σ~B(e^+e^-→D_s^+D_(s1)(2536)^-+c.c.)·B(D_(s1)(2536)^-→■^(*0)K^-)=(7.5±1.8±0.7) pb and σ~B(e^+e^-→D_s^+D_(s2)~*(2573)^-+ c.c.)·B(D_(s2)~*(2573)^-→■~0 K^-)=(19.7 ± 2.9 ±2.0) pb. For the D_(s1)(2536)^-and D_(s2)~*(2573)^-mesons, the masses and widths are measured to be M(D_(s1)(2536)^-)=(2537.7±0.5 ±3.1) MeV/c2, Γ(D_(s1)(2536)^-) =(1.7 ±1.2 ±0.6)MeV, and M(D_(s2)~*(2573)^-)=(2570.7±2.0 ±1.7) MeV/c^2, Γ(D_(s2)~*(2573)^-)=(17.2 ±3.6 ±1.1) MeV. The spin-parity of the D_(s2)~*(2573)^-meson is determined to be J^p= 2^+. In addition, the processes e^+e^-→D_s^+■^((*)0)K^-are searched for using the data samples taken at four(two) center-of-mass energies between 4.416(4.527) and 4.575 GeV, and upper limits at the 90% confidence level on the cross sections are determined. 展开更多
关键词 cross section P-WAVE D_s MESONS RESONANCE parameters spin-parity BESIII
原文传递
Evidence for the decays of ∧_c^+→∑^+η and ∑^+η’
9
作者 M.Ablikim F.F.An +322 位作者 Q.An Y.Bai Y.Ban H.Cai X.Cai G.F.Cao J.F.Chang G.Chen H.S.Chen J.C.Chen M.L.Chen P.L.Chen S.J.Chen Y.B.Chen W.Cheng H.LDai J.P.Dai Z.Y.Deng Y.Ding C.Dong J.Dong L.Y.Dong M.Y.Dong Z.L.Dou S.X.Du P.F.Duan J.Z.Fan J.Fang S.S.Fang Y.Fang C.Q.Feng C.D.Fu Y.Fu Q.Gao X.L.Gao Y.Gao Y.G.Gao Z.Gao L.Gong W.X.Gong L.M.Gu M.H.Gu Y.T.Gu A.Q.Guo L.B.Guo R.P.Guo Y.P.Guo S.Han X.Q.Hao K.L.He Y.K.Heng Z.L.Hou H.M.Hu J.F.Hu T.Hu Y.Hu G.S.Huang J.S.Huang X.T.Huang X.Z.Huang Z.L.Huang Q.Ji Q.P.Ji X.B.Ji X.L.Ji X.S.Jiang X.Y.Jiang J.B.Jiao Z.Jiao D.P.Jin S.Jin Y.Jin X.S.Kang B.C.Ke C.Li Cheng Li D.M.Li F.Li F.Y.Li G.Li H.B.Li H.J.Li J.C.Li J.W.Li Ke Li Lei Li P.L.Li P.R.Li Q.Y.Li T.Li W.D.Li W.G.Li X.L.Li X.N. Li X.Q.Li Z.B.Li H.Liang Y.F.Liang Y.T.Liang G.R.Liao L.Z.Liao C.X.Lin D.X.Lin B.Liu B.J.Liu C.X.Liu D.Liu D.Y.Liu F.H.Liu Fang Liu Feng Liu H.B.Liu H.L.Liu H.M.Liu Huanhuan Liu Huihui Liu J.B.Liu J.Y.Liu K.Liu K.Y.Liu Ke Liu Q.Liu S.B.Liu X.Liu Y.B.Liu Z.A.Liu Zhiqing Liu Y.F.Long X.C.Lou H.J.Lu J.D.Lu J.G.Lu Y.Lu Y.P.Lu C.L.Luo M.X.Luo T.Luo X.L.Luo X.R.Lyu F.C.Ma H.L.Ma L.L.Ma M.M.Ma Q.M.Ma X.N.Ma X.X.Ma X.Y.Ma Y.M.Ma Y.J.Mao Z.P.Mao Z.X.Meng J.Min T.J.Min X.H.Mo Y.J.Mo Z.Ning S.L.Niu S.L.Olsen Q.Ouyang Y.Pan H.P.Peng J.L.Ping R.G.Ping H.R.Qi M.Qi T.Y.Qi S.Qian C.F.Qiao N.Qin Z.H.Qin J.F.Qiu S.Q.Qu G.Rong W.Shan X.Y.Shan M.Shao C.P. Shen P.X.Shen X.Y.Shen H.Y.Sheng X.Shi J.J.Song X.Y.Song G.X.Sun J.F.Sun L.Sun S.S.Sun X.H.Sun Y.J.Sun Y.K.Sun Y.Z.Sun Z.J.Sun Z.T.Sun Y.T.Tan C.J.Tang G.Y.Tang X.Tang B.Wang B.L.Wang C.W.Wang D.Y.Wang Dan Wang K.Wang L.L.Wang L.S.Wang M.Wang Meng Wang P.Wang P.L.Wang W.P.Wang X.F.Wang Y.Wang Y.F.Wang Z.Wang Z.G.Wang Z.Y.Wang Zongyuan Wang D.H.Wei S.P.Wen L.H.Wu L.J.Wu Z.Wu L.Xia Y.Xia D.Xiao Y.J.Xiao Z.J.Xiao Y.G.Xie Y.H.Xie X.A.Xiong Q.L.Xiu G.F.Xu J.J.Xu L.Xu Q.J.Xu Q.N.Xu X.P.Xu F.Yan L.Yan w.B.Yan W.C.Yan Y.H.Yan H.J.Yang H.X.Yang L.Yang S.L.Yang Y.H.Yang Y.X.Yang Yifan Yang Z.Q.Yang M.Ye M.H.Ye J.H.Yin Z.Y.You B.X.Yu C.X.Yu J.S.Yu C.Z.Yuan Y.Yuan Y.Zeng B.X.Zhang B.Y.Zhang C.C.Zhang D.H.Zhang H.H.Zhang H.Y.Zhang J.Zhang J.L.Zhang J.W.Zhang J.Y.Zhang J.Z.Zhang K.Zhang L.Zhang S.F.Zhang T.J.Zhang X.Y.Zhang Y.Zhang Y.H.Zhang Y.T.Zhang Yang Zhang Yao Zhang Yu Zhang Z.H.Zhang Z.P.Zhang Z.Y.Zhang G.Zhao J.W.Zhao J.Y.Zhao J.Z.Zhao Lei Zhao Ling Zhao M.G.Zhao Q.Zhao S.J.Zhao T.C.Zhao Y.B.Zhao Z.G.Zhao B.Zheng J.P.Zheng W.J.Zheng Y.H.Zheng B.Zhong l.zhou Q.Zhou X.Zhou X.K.Zhou X.R.Zhou X.Y.Zhou Xiaoyu Zhou Xu Zhou A.N.Zhu J.Zhu K.Zhu K.J.Zhu S.Zhu S.H.Zhu X.L.Zhu Y.C.Zhu Y.S.Zhu Z.A.Zhu J.Zhuang B.S. Zou J.H.Zou 《Chinese Physics C》 SCIE CAS CSCD 2019年第8期15-23,共9页
We study the hadronic decays of ∧c+ to the final states ∑+η and ∑+η’,using an e+e-annihilation data sample of 567 pb-1 taken at a center-of-mass energy of 4.6 GeV with the BESIII detector at the BEPCⅡ collider.... We study the hadronic decays of ∧c+ to the final states ∑+η and ∑+η’,using an e+e-annihilation data sample of 567 pb-1 taken at a center-of-mass energy of 4.6 GeV with the BESIII detector at the BEPCⅡ collider.We find evidence for the decays ∧c+→∑+η and ∑+η’ with statistical significance of 2.5σ and 3.2σ,respectively.Normalizing to the reference decays ∧c+→∑+π0 and ∑+ω,we obtain the ratios of the branching fractions■and ■to be 0.35±0.16±0.02 and 0.86±0.34±0.04,respectively.The upper limits at the 90% confidence level are set to be■and■.Using BESIII measurements of the branching fractions of the reference decays,we determine B(∧c+→∑+η)=(0.41±0.19±0.05)%(<0.68%)and B(∧c+→∑+η’)=(1.34±0.53 ±0.19)%(<1.9%).Here,the first uncertainties are statistical and the second systematic.The obtained branching fraction of ∧c+→∑+η is consistent with the previous measurement,and the branching fraction of ∧c+→∑+η’ is measured for the first time. 展开更多
关键词 charmed BARYON ∧c^+ DECAYS branching FRACTIONS
原文传递
Antineutrino energy spectrum unfolding based on the Daya Bay measurement and its applications
10
作者 F.P.An A.B.Balantekin +192 位作者 M.Bishai S.Blyth G.F.Cao J.Cao J.F.Chang Y.Chang H.S.Chen S.M.Chen Y.Chen Y.X.Chen J.Cheng Z.K.Cheng J.J.Cherwinka M.C.Chu J.P.Cummings O.Dalager F.S.Deng Y.Y.Ding M.V.Diwan T.Dohnal D.Dolzhikov J.Dove M.Dvorak D.A.Dwyer J.P.Gallo M.Gonchar G.H.Gong H.Gong M.Grassi W.Q.Gu J.Y.Guo L.Guo X.H.Guo Y.H.Guo Z.Guo R.W.Hackenburg S.Hans a M.He K.M.Heeger Y.K.Heng Y.K.Hor Y.B.Hsiung B.Z.Hu J.R.Hu T.Hu Z.J.Hu H.X.Huang J.H.Huang X.T.Huang Y.B.Huang P.Huber D.E.Jaffe K.L.Jen X.L.Ji X.P.Ji R.A.Johnson D.Jones L.Kang S.H.Kettel S.Kohn M.Kramer T.J.Langford J.Lee J.H.C.Lee R.T.Lei R.Leitner J.K.C.Leung F.Li H.L.Li J.J.Li Q.J.Li R.H.Li S.Li S.C.Li W.D.Li X.N.Li X.Q.Li Y.F.Li Z.B.Li H.Liang C.J.Lin G.L.Lin S.Lin J.J.Ling J.M.Link26 L.Littenberg B.R.Littlejohn J.C.Liu J.L.Liu J.X.Liu C.Lu H.Q.Lu K.B.Luk B.Z.Ma X.B.Ma X.Y.Ma Y.Q.Ma R.C.Mandujano C.Marshall K.T.McDonald R.D.McKeown Y.Meng J.Napolitano D.Naumov E.Naumova T.M.T.Nguyen J.P.Ochoa-Ricoux A.Olshevskiy H.-R.Pan J.Park S.Patton J.C.Peng C.S.J.Pun F.Z.Qi M.Qi X.Qian N.Raper J.Ren C.Morales Reveco R.Rosero B.Roskovec X.C.Ruan H.Steiner J.L.Sun T.Tmej1 K.Treskov W.-H.Tse C.E.Tull B.Viren V.Vorobel C.H.Wang J.Wang M.Wang N.Y.Wang R.G.Wang W.Wang W.Wang X.Wang Y.Wang Y.F.Wang Z.Wang Z.Wang Z.M.Wang H.Y.Wei L.H.Wei L.J.Wen K.Whisnant C.G.White H.L.H.Wong E.Worcester D.R.Wu F.L.Wu Q.Wu W.J.Wu D.M.Xia Z.Q.Xie Z.Z.Xing H.K.Xu J.L.Xu T.Xu T.Xue C.G.Yang L.Yang Y.Z.Yang H.F.Yao M.Ye M.Yeh B.L.Young H.Z.Yu Z.Y.Yu B.B.Yue V.Zavadskyi S.Zeng Y.Zeng L.Zhan C.Zhang F.Y.Zhang H.H.Zhang J.W.Zhang Q.M.Zhang S.Q.Zhang X.T.Zhang Y.M.Zhang Y.X.Zhang Y.Y.Zhang Z.J.Zhang Z.P.Zhang Z.Y.Zhang J.Zhao R.Z.Zhao l.zhou H.L.Zhuang J.H.Zou 《Chinese Physics C》 SCIE CAS CSCD 2021年第7期1-19,共19页
The prediction of reactor antineutrino spectra will play a crucial role as reactor experiments enter the precision era.The positron energy spectrum of 3.5 million antineutrino inverse beta decay reactions observed by ... The prediction of reactor antineutrino spectra will play a crucial role as reactor experiments enter the precision era.The positron energy spectrum of 3.5 million antineutrino inverse beta decay reactions observed by the Daya Bay experiment,in combination with the fission rates of fissile isotopes in the reactor,is used to extract the positron energy spectra resulting from the fission of specific isotopes.This information can be used to produce a precise,data-based prediction of the antineutrino energy spectrum in other reactor antineutrino experiments with different fission fractions than Daya Bay.The positron energy spectra are unfolded to obtain the antineutrino energy spectra by removing the contribution from detector response with the Wiener-SVD unfolding method.Consistent results are obtained with other unfolding methods.A technique to construct a data-based prediction of the reactor antineutrino energy spectrum is proposed and investigated.Given the reactor fission fractions,the technique can predict the energy spectrum to a 2%precision.In addition,we illustrate how to perform a rigorous comparison between the unfolded antineutrino spectrum and a theoretical model prediction that avoids the input model bias of the unfolding method. 展开更多
关键词 reactor antineutrino energy spectrum Daya Bay application
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部