期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Sensorless Control on a Dual-Fed Flux Modulated Electric Motor
1
作者 Xiang Luo l.zhu +2 位作者 Xu Cai Weinong Fu Xinye Wu 《CES Transactions on Electrical Machines and Systems》 CSCD 2019年第1期65-71,共7页
This paper proposes the operation principle and a new flux estimation method for sensorless control strategy for the dual-fed flux modulated electric motor(DFFM).The DFFM is designed based on the flux modulation theor... This paper proposes the operation principle and a new flux estimation method for sensorless control strategy for the dual-fed flux modulated electric motor(DFFM).The DFFM is designed based on the flux modulation theory,it includes two stator windings and one rotor which simplify the mechanical structure.The rotor has only modulation iron and no permanent magnets on it,so there is no cogging torque problem in this motor.With adjustment of the outer and inner stator flux rotating frequency and amplitude,different rotation speed and torque of the sandwiched rotor can be gained for the DFFM.Furthermore,an improved flux estimation based sensorless control strategy is performed on the proposed machine to fit the two winding set control situation.The startup and performance of the proposed control strategy is verified by the simulation and experiments. 展开更多
关键词 Dual-fed flux modulated electric motor flux estimation flux modulation sensorless control
下载PDF
Amplitude analysis of the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)
2
作者 M.Ablikim M.N.Achasov +642 位作者 P.Adlarson O.Afedulidis X.C.Ai R.Aliberti A.Amoroso Q.An Y.Bai O.Bakina I.Balossino Y.Ban H.-R.Bao V.Batozskaya K.Begzsuren N.Berger M.Berlowski M.Bertani D.Bettoni F.Bianchi E.Bianco A.Bortone I.Boyko R.A.Briere A.Brueggemann H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin J.F.Chang W.L.Chang G.R.Che G.Chelkov C.Chen C.H.Chen Chao Chen G.Chen H.S.Chen M.L.Chen S.J.Chen S.L.Chen S.M.Chen T.Chen X.R.Chen X.T.Chen Y.B.Chen Y.Q.Chen Z.J.Chen Z.Y.Chen S.K.Choi X.Chu G.Cibinetto F.Cossio J.J.Cui H.L.Dai J.P.Dai A.Dbeyssi R.E.de Boer D.Dedovich C.Q.Deng Z.Y.Deng A.Denig I.Denysenko M.Destefanis F.De Mori B.Fang S.S.Fang W.X.Fang Y.Fang Y.Q.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng J.H.Feng Y.T.Feng K.Fischer M.Fritsch C.D.Fu J.L.Fu Y.W.Fu H.Gao Y.N.Gao Yang Gao S.Garbolino I.Garzia P.T.Ge Z.W.Ge C.Geng E.M.Gersabeck B.Ding X.X.Ding Y.Ding Y.Ding J.Dong L.Y.Dong M.Y.Dong X.Dong M.C.Du S.X.Du Z.H.Duan P.Egorov Y.H.Fan J.Fang JA.Gilman K.Goetzen L.Gong W.X.Gong W.Gradl S.Gramigna M.Greco M.H.Gu Y.T.Gu C.Y.Guan Z.L.Guan A.Q.Guo L.B.Guo M.J.Guo R.P.Guo Y.P.Guo A.Guskov J.Gutierrez K.L.Han T.T.Han X.Q.Hao F.A.Harris K.K.He K.L.He F.H.Heinsius C.H.Heinz Y.K.Heng C.Herold T.Holtmann P.C.Hong G.Y.Hou X.T.Hou Y.R.Hou Z.L.Hou B.Y.Hu H.M.Hu J.F.Hu T.Hu Y.Hu G.S.Huang K.X.Huang L.Q.Huang X.T.Huang Y.P.Huang T.Hussain F.H\"olzken N.H\"usken N.in der Wiesche M.Irshad J.Jackson S.Janchiv J.H.Jeong Q.Ji Q.P.Ji W.Ji X.B.Ji X.L.Ji Y.Y.Ji X.Q.Jia Z.K.Jia D.Jiang H.B.Jiang P.C.Jiang S.S.Jiang T.J.Jiang X.S.Jiang Y.Jiang J.B.Jiao J.K.Jiao Z.Jiao S.Jin Y.Jin M.Q.Jing X.M.Jing T.Johansson S.Kabana N.Kalantar-Nayestanaki X.L.Kang X.S.Kang M.Kavatsyuk B.C.Ke V.Khachatryan A.Khoukaz R.Kiuchi O.B.Kolcu B.Kopf M.Kuessner X.Kui A.Kupsc W.K\"uhn J.J.Lane P.Larin L.Lavezzi T.T.Lei Z.H.Lei H.Leithoff M.Lellmann T.Lenz C.Li C.Li C.H.Li Cheng Li D.M.Li F.Li G.Li H.Li H.B.Li H.J.Li H.N.Li Hui Li J.R.Li J.S.Li K.Li L.J.Li L.K.Li Lei Li M.H.Li P.R.Li Q.M.Li Q.X.Li R.Li S.X.Li T.Li W.D.Li W.G.Li X.Li X.H.Li X.L.Li X.Y.Li Y.G.Li Z.J.Li Z.X.Li C.Liang H.Liang H.Liang Y.F.Liang Y.T.Liang G.R.Liao L.Z.Liao Y.P.Liao J.Libby A.Limphirat D.X.Lin T.Lin B.J.Liu B.X.Liu C.Liu C.X.Liu F.Liu F.H.Liu Feng Liu G.M.Liu H.Liu H.B.Liu H.H.Liu H.M.Liu Huihui Liu J.B.Liu J.Y.Liu K.Liu K.Y.Liu Ke Liu L.Liu L.C.Liu Lu Liu M.H.Liu P.L.Liu Q.Liu S.B.Liu T.Liu W.K.Liu W.M.Liu X.Liu X.Liu Y.Liu Y.Liu Y.B.Liu Z.A.Liu Z.D.Liu Z.Q.Liu X.C.Lou F.X.Lu H.J.Lu J.G.Lu X.L.Lu Y.Lu Y.P.Lu Z.H.Lu C.L.Luo M.X.Luo T.Luo X.L.Luo X.R.Lyu Y.F.Lyu F.C.Ma H.Ma H.L.Ma J.L.Ma L.L.Ma M.M.Ma Q.M.Ma R.Q.Ma X.T.Ma X.Y.Ma Y.Ma Y.M.Ma F.E.Maas M.Maggiora S.Malde A.Mangoni Y.J.Mao Z.P.Mao S.Marcello Z.X.Meng J.G.Messchendorp G.Mezzadri H.Miao T.J.Min R.E.Mitchell X.H.Mo B.Moses N.Yu.Muchnoi J.Muskalla Y.Nefedov F.Nerling I.B.Nikolaev Z.Ning S.Nisar Q.L.Niu W.D.Niu Y.Niu S.L.Olsen Q.Ouyang S.Pacetti X.Pan Y.Pan A.Pathak P.Patteri Y.P.Pei M.Pelizaeus H.P.Peng Y.Y.Peng K.Peters J.L.Ping R.G.Ping S.Plura V.Prasad F.Z.Qi H.Qi H.R.Qi M.Qi T.Y.Qi S.Qian W.B.Qian C.F.Qiao J.J.Qin L.Q.Qin X.S.Qin Z.H.Qin J.F.Qiu S.Q.Qu Z.H.Qu C.F.Redmer K.J.Ren A.Rivetti M.Rolo G.Rong Ch.Rosner S.N.Ruan N.Salone A.Sarantsev Y.Schelhaas K.Schoenning M.Scodeggio K.Y.Shan W.Shan X.Y.Shan J.F.Shangguan L.G.Shao M.Shao C.P.Shen H.F.Shen W.H.Shen X.Y.Shen B.A.Shi H.C.Shi J.L.Shi J.Y.Shi Q.Q.Shi R.S.Shi S.Y.Shi X.Shi X.D.Shi J.J.Song T.Z.Song W.M.Song Y.J.Song Y.X.Song S.Sosio S.Spataro F.Stieler Y.J.Su G.B.Sun G.X.Sun H.Sun H.K.Sun J.F.Sun K.Sun L.Sun S.S.Sun T.Sun W.Y.Sun Y.Sun Y.J.Sun Y.Z.Sun Z.Q.Sun Z.T.Sun C.J.Tang G.Y.Tang J.Tang Y.A.Tang L.Y.Tao Q.T.Tao M.Tat J.X.Teng V.Thoren W.H.Tian Y.Tian Z.F.Tian I.Uman Y.Wan S.J.Wang B.Wang B.L.Wang Bo Wang D.Y.Wang F.Wang H.J.Wang J.P.Wang K.Wang L.L.Wang M.Wang Meng Wang N.Y.Wang S.Wang S.Wang T.Wang T.J.Wang W.Wang W.Wang W.P.Wang X.Wang X.F.Wang X.J.Wang X.L.Wang X.N.Wang Y.Wang Y.D.Wang Y.F.Wang Y.L.Wang Y.N.Wang Y.Q.Wang Yaqian Wang Yi Wang Z.Wang Z.L.Wang Z.Y.Wang Ziyi Wang D.Wei D.H.Wei F.Weidner S.P.Wen Y.R.Wen U.Wiedner G.Wilkinson M.Wolke L.Wollenberg C.Wu J.F.Wu L.H.Wu L.J.Wu X.Wu X.H.Wu Y.Wu Y.H.Wu Y.J.Wu Z.Wu L.Xia X.M.Xian B.H.Xiang T.Xiang D.Xiao G.Y.Xiao S.Y.Xiao Y.L.Xiao Z.J.Xiao C.Xie X.H.Xie Y.Xie Y.G.Xie Y.H.Xie Z.P.Xie T.Y.Xing C.F.Xu C.J.Xu G.F.Xu H.Y.Xu Q.J.Xu Q.N.Xu W.Xu W.L.Xu X.P.Xu Y.C.Xu Z.P.Xu Z.S.Xu F.Yan L.Yan W.B.Yan W.C.Yan X.Q.Yan H.J.Yang H.L.Yang H.X.Yang T.Yang Y.Yang Y.F.Yang Y.F.Yang Y.X.Yang Z.W.Yang Z.P.Yao M.Ye M.H.Ye J.H.Yin Z.Y.You B.X.Yu C.X.Yu G.Yu J.S.Yu T.Yu X.D.Yu C.Z.Yuan J.Yuan L.Yuan S.C.Yuan Y.Yuan Z.Y.Yuan C.X.Yue A.A.Zafar F.R.Zeng S.H.Zeng X.Zeng Y.Zeng Y.J.Zeng Y.J.Zeng X.Y.Zhai Y.C.Zhai Y.H.Zhan A.Q.Zhang B.L.Zhang B.X.Zhang D.H.Zhang G.Y.Zhang H.Zhang H.C.Zhang H.H.Zhang H.H.Zhang H.Q.Zhang H.Y.Zhang J.Zhang J.Zhang J.J.Zhang J.L.Zhang J.Q.Zhang J.W.Zhang J.X.Zhang J.Y.Zhang J.Z.Zhang Jianyu Zhang L.M.Zhang Lei Zhang P.Zhang Q.Y.Zhang S.H.Zhang Shulei Zhang X.D.Zhang X.M.Zhang X.Y.Zhang Y.Zhang Y.Zhang Y.T.Zhang Y.H.Zhang Y.M.Zhang Yan Zhang Z.D.Zhang Z.H.Zhang Z.L.Zhang Z.Y.Zhang Z.Y.Zhang G.Zhao J.Y.Zhao J.Z.Zhao L.Zhao Lei Zhao M.G.Zhao R.P.Zhao S.J.Zhao Y.B.Zhao Y.X.Zhao Z.G.Zhao A.Zhemchugov B.Zheng J.P.Zheng W.J.Zheng Y.H.Zheng B.Zhong X.Zhong H.Zhou J.Y.Zhou L.P.Zhou X.Zhou X.K.Zhou X.R.Zhou X.Y.Zhou Y.Z.Zhou J.Zhu K.Zhu K.J.Zhu l.zhu L.X.Zhu S.H.Zhu S.Q.Zhu T.J.Zhu W.D.Zhu Y.C.Zhu Z.A.Zhu J.H.Zou J.Zu 《Chinese Physics C》 SCIE CAS CSCD 2024年第8期6-33,共28页
Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays... Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η).The fit fractions of individual components are obtained,and large interferences among the dominant components of the decays D^(0)→a_(1)(1260)π,D^(0)→π(1300)π,D^(0)→ρ(770)ρ(770),and D^(0)→2(ππ)_(S)are observed in both channels.With the obtained amplitude model,the CP-even fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are determined to be(75.2±1.1_(stat).±1.5_(syst.))%and(68.9±1.5_(stat).±2.4_(syst.))%,respectively.The branching fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are measured to be(0.688±0.010_(stat.)±0.010_(syst.))%and(0.951±0.025_(stat.)±0.021_(syst.))%,respectively.The amplitude analysis provides an important model for the binning strategy in measuring the strong phase parameters of D^(0)→4πwhen used to determine the CKM angleγ(ϕ_(3))via the B^(−)→DK^(−)decay. 展开更多
关键词 BESIII D^(0)meson decays amplitude analysis CP-even fraction
原文传递
Determination of the number ofψ(3686)events taken at BESⅢ
3
作者 M.Ablikim M.N.Achasov +660 位作者 P.Adlarson O.Afedulidis X.C.Ai R.Aliberti A.Amoroso Q.An Y.Bai O.Bakina I.Balossino Y.Ban H.-R.Bao V.Batozskaya K.Begzsuren N.Berger M.Berlowski M.Bertani D.Bettoni F.Bianchi E.Bianco A.Bortone I.Boyko R.A.Briere A.Brueggemann H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin J.F.Chang G.R.Che G.Chelkov C.Chen C.H.Chen Chao Chen G.Chen H.S.Chen H.Y.Chen M.L.Chen S.J.Chen S.L.Chen S.M.Chen T.Chen X.R.Chen X.T.Chen Y.B.Chen Y.Q.Chen Z.J.Chen Z.Y.Chen S.K.Choi G.Cibinetto F.Cossio J.J.Cui H.L.Dai J.P.Dai A.Dbeyssi R.E.de Boer D.Dedovich C.Q.Deng Z.Y.Deng A.Denig I.Denysenko M.Destefanis F.De Mori B.Ding X.X.Ding Y.Ding Y.Ding J.Dong L.Y.Dong M.Y.Dong X.Dong M.C.Du S.X.Du Y.Y.Duan Z.H.Duan P.Egorov Y.H.Fan J.Fang J.Fang S.S.Fang W.X.Fang Y.Fang Y.Q.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng J.H.Feng Y.T.Feng M.Fritsch C.D.Fu J.L.Fu Y.W.Fu H.Gao X.B.Gao Y.N.Gao Yang Gao S.Garbolino I.Garzia L.Ge P.T.Ge Z.W.Ge C.Geng E.M.Gersabeck A.Gilman K.Goetzen L.Gong W.X.Gong W.Gradl S.Gramigna M.Greco M.H.Gu Y.T.Gu C.Y.Guan Z.L.Guan A.Q.Guo L.B.Guo M.J.Guo R.P.Guo Y.P.Guo A.Guskov J.Gutierrez K.L.Han T.T.Han F.Hanisch X.Q.Hao F.A.Harris K.K.He K.L.He F.H.Heinsius C.H.Heinz Y.K.Heng C.Herold T.Holtmann P.C.Hong G.Y.Hou X.T.Hou Y.R.Hou Z.L.Hou B.Y.Hu H.M.Hu J.F.Hu S.L.Hu T.Hu Y.Hu G.S.Huang K.X.Huang L.Q.Huang X.T.Huang Y.P.Huang T.Hussain F.Hölzken N.Hüsken N.in der Wiesche J.Jackson S.Janchiv J.H.Jeong Q.Ji Q.P.Ji W.Ji X.B.Ji X.L.Ji Y.Y.Ji X.Q.Jia Z.K.Jia D.Jiang H.B.Jiang P.C.Jiang S.S.Jiang T.J.Jiang X.S.Jiang Y.Jiang J.B.Jiao J.K.Jiao Z.Jiao S.Jin Y.Jin M.Q.Jing X.M.Jing T.Johansson S.Kabana N.Kalantar-Nayestanaki X.L.Kang X.S.Kang M.Kavatsyuk B.C.Ke V.Khachatryan A.Khoukaz R.Kiuchi O.B.Kolcu B.Kopf M.Kuessner X.Kui N.Kumar A.Kupsc W.Kühn J.J.Lane P.Larin L.Lavezzi T.T.Lei Z.H.Lei M.Lellmann T.Lenz C.Li C.Li C.H.Li Cheng Li D.M.Li F.Li G.Li H.B.Li H.J.Li H.N.Li Hui Li J.R.Li J.S.Li Ke Li L.J.Li L.K.Li Lei Li M.H.Li P.R.Li Q.M.Li Q.X.Li R.Li S.X.Li T.Li W.D.Li W.G.Li X.Li X.H.Li X.L.Li X.Z.Li Xiaoyu Li Y.G.Li Z.J.Li Z.X.Li Z.Y.Li C.Liang H.Liang H.Liang Y.F.Liang Y.T.Liang G.R.Liao L.Z.Liao Y.P.Liao J.Libby A.Limphirat C.C.Lin D.X.Lin T.Lin B.J.Liu B.X.Liu C.Liu C.X.Liu F.H.Liu Fang Liu Feng Liu G.M.Liu H.Liu H.B.Liu H.M.Liu Huanhuan Liu Huihui Liu J.B.Liu J.Y.Liu K.Liu K.Y.Liu Ke Liu L.Liu L.C.Liu Lu Liu M.H.Liu P.L.Liu Q.Liu S.B.Liu T.Liu W.K.Liu W.M.Liu X.Liu X.Liu Y.Liu Y.Liu Y.B.Liu Z.A.Liu Z.D.Liu Z.Q.Liu X.C.Lou F.X.Lu H.J.Lu J.G.Lu X.L.Lu Y.Lu Y.P.Lu Z.H.Lu C.L.Luo J.R.Luo M.X.Luo T.Luo X.L.Luo X.R.Lyu Y.F.Lyu F.C.Ma H.Ma H.L.Ma J.L.Ma L.L.Ma M.M.Ma Q.M.Ma R.Q.Ma T.Ma X.T.Ma X.Y.Ma Y.Ma Y.M.Ma F.E.Maas M.Maggiora S.Malde Y.J.Mao Z.P.Mao S.Marcello Z.X.Meng J.G.Messchendorp G.Mezzadri H.Miao T.J.Min R.E.Mitchell X.H.Mo B.Moses N.Yu.Muchnoi J.Muskalla Y.Nefedov F.Nerling L.S.Nie I.B.Nikolaev Z.Ning S.Nisar Q.L.Niu W.D.Niu Y.Niu S.L.Olsen Q.Ouyang S.Pacetti X.Pan Y.Pan A.Pathak P.Patteri Y.P.Pei M.Pelizaeus H.P.Peng Y.Y.Peng K.Peters J.L.Ping R.G.Ping S.Plura V.Prasad F.Z.Qi H.Qi H.R.Qi M.Qi T.Y.Qi S.Qian W.B.Qian C.F.Qiao X.K.Qiao J.J.Qin L.Q.Qin L.Y.Qin X.S.Qin Z.H.Qin J.F.Qiu Z.H.Qu C.F.Redmer K.J.Ren A.Rivetti M.Rolo G.Rong Ch.Rosner S.N.Ruan N.Salone A.Sarantsev Y.Schelhaas K.Schoenning M.Scodeggio K.Y.Shan W.Shan X.Y.Shan Z.J.Shang J.F.Shangguan L.G.Shao M.Shao C.P.Shen H.F.Shen W.H.Shen X.Y.Shen B.A.Shi H.Shi H.C.Shi J.L.Shi J.Y.Shi Q.Q.Shi S.Y.Shi X.Shi J.J.Song T.Z.Song W.M.Song Y.J.Song Y.X.Song S.Sosio S.Spataro F.Stieler Y.J.Su G.B.Sun G.X.Sun H.Sun H.K.Sun J.F.Sun K.Sun L.Sun S.S.Sun T.Sun W.Y.Sun Y.Sun Y.J.Sun Y.Z.Sun Z.Q.Sun Z.T.Sun C.J.Tang G.Y.Tang J.Tang M.Tang Y.A.Tang L.Y.Tao Q.T.Tao M.Tat J.X.Teng V.Thoren W.H.Tian Y.Tian Z.F.Tian I.Uman Y.Wan S.J.Wang B.Wang B.L.Wang Bo Wang D.Y.Wang F.Wang H.J.Wang J.J.Wang J.P.Wang K.Wang L.L.Wang M.Wang N.Y.Wang S.Wang S.Wang T.Wang T.J.Wang W.Wang W.Wang W.P.Wang X.Wang X.F.Wang X.J.Wang X.L.Wang X.N.Wang Y.Wang Y.D.Wang Y.F.Wang Y.L.Wang Y.N.Wang Y.Q.Wang Yaqian Wang Yi Wang Z.Wang Z.L.Wang Z.Y.Wang Ziyi Wang D.H.Wei F.Weidner S.P.Wen Y.R.Wen U.Wiedner G.Wilkinson M.Wolke L.Wollenberg C.Wu J.F.Wu L.H.Wu L.J.Wu X.Wu X.H.Wu Y.Wu Y.H.Wu Y.J.Wu Z.Wu L.Xia X.M.Xian B.H.Xiang T.Xiang D.Xiao G.Y.Xiao S.Y.Xiao Y.L.Xiao Z.J.Xiao C.Xie X.H.Xie Y.Xie Y.G.Xie Y.H.Xie Z.P.Xie T.Y.Xing C.F.Xu C.J.Xu G.F.Xu H.Y.Xu M.Xu Q.J.Xu Q.N.Xu W.Xu W.L.Xu X.P.Xu Y.C.Xu Z.P.Xu Z.S.Xu F.Yan L.Yan W.B.Yan W.C.Yan X.Q.Yan H.J.Yang H.L.Yang H.X.Yang Tao Yang Y.Yang Y.F.Yang Y.X.Yang Yifan Yang Z.W.Yang Z.P.Yao M.Ye M.H.Ye J.H.Yin Z.Y.You B.X.Yu C.X.Yu G.Yu J.S.Yu T.Yu X.D.Yu Y.C.Yu C.Z.Yuan J.Yuan J.Yuan L.Yuan S.C.Yuan Y.Yuan Z.Y.Yuan C.X.Yue A.A.Zafar F.R.Zeng S.H.Zeng X.Zeng Y.Zeng Y.J.Zeng Y.J.Zeng X.Y.Zhai Y.C.Zhai Y.H.Zhan A.Q.Zhang B.L.Zhang B.X.Zhang D.H.Zhang G.Y.Zhang H.Zhang H.Zhang H.C.Zhang H.H.Zhang H.H.Zhang H.Q.Zhang H.R.Zhang H.Y.Zhang J.Zhang J.Zhang J.J.Zhang J.L.Zhang J.Q.Zhang J.S.Zhang J.W.Zhang J.X.Zhang J.Y.Zhang J.Z.Zhang Jianyu Zhang L.M.Zhang Lei Zhang P.Zhang Q.Y.Zhang R.Y.Zhang Shuihan Zhang Shulei Zhang X.D.Zhang X.M.Zhang X.Y.Zhang Y.Zhang Y.T.Zhang Y.H.Zhang Y.M.Zhang Yan Zhang Yao Zhang Z.D.Zhang Z.H.Zhang Z.L.Zhang Z.Y.Zhang Z.Y.Zhang Z.Z.Zhang G.Zhao J.Y.Zhao J.Z.Zhao Lei Zhao Ling Zhao M.G.Zhao N.Zhao R.P.Zhao S.J.Zhao Y.B.Zhao Y.X.Zhao Z.G.Zhao A.Zhemchugov B.Zheng B.M.Zheng J.P.Zheng W.J.Zheng Y.H.Zheng B.Zhong X.Zhong H.Zhou J.Y.Zhou L.P.Zhou S.Zhou X.Zhou X.K.Zhou X.R.Zhou X.Y.Zhou Y.Z.Zhou J.Zhu K.Zhu K.J.Zhu K.S.Zhu l.zhu L.X.Zhu S.H.Zhu S.Q.Zhu T.J.Zhu W.D.Zhu Y.C.Zhu Z.A.Zhu J.H.Zou J.Zu 《Chinese Physics C》 SCIE CAS CSCD 2024年第9期8-20,共13页
The number ofψ(3686)events collected by the BESⅢdetector during the 2021 run period is determined to be(2259.3±11.1)×10~6 by counting inclusiveψ(3686)hadronic events.The uncertainty is systematic and the ... The number ofψ(3686)events collected by the BESⅢdetector during the 2021 run period is determined to be(2259.3±11.1)×10~6 by counting inclusiveψ(3686)hadronic events.The uncertainty is systematic and the statistical uncertainty is negligible.Meanwhile,the numbers ofψ(3686)events collected during the 2009 and 2012run periods are updated to be(107.7±0.6)×10~6 and(345.4±2.6)×10~6,respectively.Both numbers are consistent with the previous measurements within one standard deviation.The total number ofψ(3686)events in the three data samples is(2712.4±14.3)×10~6. 展开更多
关键词 ψ(3686) inclusive process Hadronic events BESⅢdetector
原文传递
青藏高原东部地壳上地幔S波速度结构--下地壳流的深部环境 被引量:105
4
作者 王椿镛 楼海 +7 位作者 吕智勇 吴建平 常利军 戴仕贵 尤惠川 唐方头 l.zhu P.Silver 《中国科学(D辑)》 CSCD 北大核心 2008年第1期22-32,共11页
在青藏高原东部沿30°N布设由26个台站组成的远震观测剖面.用远震P波接收函数反演方法获得了该剖面下方0~80km深度范围的S波速度结构.反演的结果揭示了沿剖面不同构造块体的地壳速度结构横向变化特征.从喜马拉雅东构造结北侧的林芝... 在青藏高原东部沿30°N布设由26个台站组成的远震观测剖面.用远震P波接收函数反演方法获得了该剖面下方0~80km深度范围的S波速度结构.反演的结果揭示了沿剖面不同构造块体的地壳速度结构横向变化特征.从喜马拉雅东构造结北侧的林芝,往东北方向的地壳逐渐增厚;地壳厚度在班公-怒江缝合带为最大值,达72km;进入羌塘地块,减至65km;至巴颜喀拉地块,为57~64km;至四川盆地,仅为40~45km.剖面的巴塘以东部分与2000年完成的竹巴龙-资中人工地震测深剖面重合,由远震接收函数确定的S波地壳结构与由人工地震测深获得的P波地壳结构在莫霍界面和壳内主要界面的深度上有很好的一致性.在羌塘地块和巴颜喀拉地块,沿观测剖面的下地壳(30~60km深度范围内)普遍存在低速异常,而四川盆地下地壳则属于正常的速度分布.剖面通过的各构造单元地壳平均波速比(泊松比):拉萨地块1.73(σ=0.247),班公-怒江缝合带1.78(σ=0.269),羌塘地块1.80(σ=0.275),巴颜喀拉地块1.86(σ=0.294)和扬子地块1.77(σ=0.265).羌塘地块和巴颜喀拉地块具有下地壳S波低速异常、复杂的莫霍过渡带以及地壳高泊松比的特征,预示下地壳物质处于热和软弱状态,这是青藏高原东部存在下地壳流的深部环境.下地壳韧性物质的流动可能起因于从高原内部至外部上地壳内重力势能的变化. 展开更多
关键词 青藏高原东部 地壳上地幔结构 远震接收函数 下地壳流
原文传递
大气CO2浓度变化与生物群系气候异常之间的关联分析 被引量:4
5
作者 周涛 仪垂祥 +1 位作者 P.S.Bakwin l.zhu 《中国科学(D辑)》 CSCD 北大核心 2008年第2期224-231,共8页
自工业革命以来全球化石燃料燃烧释放到大气中的CO2持续升高,但大气中CO2的增长速率却并没有相应地增加。造成这种差异的原因,尤其是造成大气CO2浓度年际变化的驱动因素以及其空间位置,目前还存在很大的争议。基于全球气候数据及相... 自工业革命以来全球化石燃料燃烧释放到大气中的CO2持续升高,但大气中CO2的增长速率却并没有相应地增加。造成这种差异的原因,尤其是造成大气CO2浓度年际变化的驱动因素以及其空间位置,目前还存在很大的争议。基于全球气候数据及相关的遥感数据,对1986-1995年大气CO2浓度增长速率(CGR)与生物群系气候异常之间的关联进行了分析。结果表明:常绿阔叶林、C4森林草地、C4草地以及针叶林与林地这4种生物群系是主要的气候异常敏感区域,其碳源,碳汇的年际变化影响着大气CO2浓度的增长速率。虽然这些影响在特征和数量上存在差异,但它们有时也会对大气CO2浓度增长速率表现出共同的作用。如厄尔尼诺年(1987年)大气CO2浓度的增长速率非常大,而造成这种现象的原因是热带生物群系(常绿阔叶林、C4森林草地、C4草地)对于厄尔尼诺年温度变化的响应。 展开更多
关键词 生物群系 碳循环 气候异常 NDVI 厄尔尼诺
原文传递
Light-weighting in aerospace component and system design 被引量:12
6
作者 l.zhu N.Li P.R.N.Childs 《Propulsion and Power Research》 SCIE 2018年第2期103-119,共17页
Light-weighting involves the use of advanced materials and engineering methods to enable structural elements to deliver the same,or enhanced,technical performance while using less material.The concept has been extensi... Light-weighting involves the use of advanced materials and engineering methods to enable structural elements to deliver the same,or enhanced,technical performance while using less material.The concept has been extensively explored and utilised in many industries from automotive applications to fashion and packaging and offers significant potential in the aviation sector.Typical implementations of light-weighting have involved use of high performance materials such as composites and optimisation of structures using computational aided engineering approaches with production enabled by advanced manufacturing methods such as additive manufacture,foam metals and hot forming.This paper reviews the principal approaches used in light-weighting,along with the scope for application of light-weighting in aviation applications from power-plants to airframe components.A particular area identified as warranting attention and amenable to the use of lightweighting approaches is the design of solar powered aircraft wings.The high aspect ratio typically used for these can be associated with insufficient stiffness,giving rise to non-linear deformation,aileron reversal,flutter and rigid-elastic coupling.Additional applications considered include ultralight aviation components and sub-systems,UAVs,and rockets.Advanced optimisation approaches can be applied to optimise the layout of structural elements,as well as geometrical parameters in order to maximise structural stiffness,minimise mass and enable incorporation of energy storage features.The use of additive manufacturing technologies,some capable of producing composite or multi-material components is an enabler for light-weighting,as features formally associated with one principal function can be designed to fulfil multiple functionalities。 展开更多
关键词 Light-weighting aviation High performance lightweight materials Numerical structural optimization Advanced manufacturing
原文传递
水稻白叶枯病抗性基因定位及其小种专化性 被引量:6
7
作者 罗利军 梅捍卫 +10 位作者 赵新华 钟代彬 王一平 余新桥 应存山 ZhikangLi A.H.Paterson DaolongWang R.Tabien l.zhu J.W.Stansel 《中国科学(C辑)》 CSCD 1998年第6期536-541,共6页
利用 3个致病性不同的水稻白叶枯病菌小种 ,对由Lemont/特青培育的 31 5个F10 重组自交系群体进行抗性基因 (QTL)RFLP分析 .共发现 1个主基因、1 0个QTL及 9对互作位点与白叶枯病菌抗性有关 .其中 ,主基因Xa4定位于第 1 1染色体上 .Xa4... 利用 3个致病性不同的水稻白叶枯病菌小种 ,对由Lemont/特青培育的 31 5个F10 重组自交系群体进行抗性基因 (QTL)RFLP分析 .共发现 1个主基因、1 0个QTL及 9对互作位点与白叶枯病菌抗性有关 .其中 ,主基因Xa4定位于第 1 1染色体上 .Xa4对CR4和CX0 8表现显性主基因遗传 ,但对CR6则表现为一个主要的加性QTL的作用 .主基因小种专化性明显大于QTL .QTL之间以及QTL与主基因之间效应累加 ,共同提供抗病性的强度和稳定性 .在感病亲本中 ,亦存在抗性QTL .因此 ,来源不同的中抗材料可能是水平抗性的良好基因源 .研究还表明 ,所定位的QTL与其他研究发现的抗不同病原菌的基因 (QTL)处于相近的染色体位置 ,意味着它们可能是同一抗性基因族的成员 . 展开更多
关键词 白叶枯病 小种专化性 水稻 基因定位 抗性基因
原文传递
RFLP mapping and race specificity of bacterial blight resistance genes (QTLs) in rice 被引量:1
8
作者 罗利军 梅捍卫 +10 位作者 赵新华 钟代彬 王一平 余新桥 应存山 Z.K.Li A.H.Paterson D.L.Wang R.E.Tabien l.zhu J.W.Stansel 《Science China(Life Sciences)》 SCIE CAS 1998年第5期542-547,共6页
By using a set of 315 recombinant inbred lines (RILs) from the cross Lemont (japonica)×Teqing (indica) and a complete linkage map with 186 well distributed RFLP markers and 3 morphological markers, a major gene (... By using a set of 315 recombinant inbred lines (RILs) from the cross Lemont (japonica)×Teqing (indica) and a complete linkage map with 186 well distributed RFLP markers and 3 morphological markers, a major gene (Xa4) and 10 QTLs and 9 pairs of epistasis loci conferring horizontal resistance to three strains of \%Xanthomonas oryza\% pv \%oryza (Xoo)\% were mapped. The Teqing allele at Xa4 on chromosome 11 acts as a dominant resistant gene against pathogen race CR4 and CX08, but as an additive QTL with a significantly (47%) reduced effect \{against the\} virulent strain, CR6. The major gene Xa4 exhibited stronger degree of race specificity. Most QTLs showed consistent levels of resistance against all three \%Xoo\% strains. The results suggest that a high level durable resistance to \%Xoo\% may be achieved by cumulative effects of multiple QTL. 展开更多
关键词 BACTERIAL blight RFLP QTL RACE specificity.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部