To retrieve sea-surface salinity (SSS) from radiometer data at 1.4 GHz, auxiliary data of sea-surface temperature (SST), surface roughness and meteorological variables are needed. The authors study oceanic passive pol...To retrieve sea-surface salinity (SSS) from radiometer data at 1.4 GHz, auxiliary data of sea-surface temperature (SST), surface roughness and meteorological variables are needed. The authors study oceanic passive polarimetric microwave remote sensing using 1.4 GHz and 10.7 GHz bands. A set of algorithms are developed for 1.4 GHz and 10.7 GHz microwave polarimetric radiometer at 50° incidence angle to retrieve wind vector, as well as other geophysical parameters, such as SSS, SST, atmospheric volumes of water vapor and liquid water. Idealized retrievals are conducted using 2 324 simulated brightness temperatures of full Stokes parameters at 1.4 GHz and 10.7 GHz. Results indicate that SSS, SST, sea-surface wind speed, direction, atmospheric volumes of water vapor and liquid water can be inversed at the same time. This suggests an alternative way for SSS remote sensing.展开更多
基金supported by Chinese Research Project under Grant No. 973-2007CB411807China Postdoctoral Science Foundation Funded Project No. 20070420070the Special Fund of China Postdoctoral Science Foundation
文摘To retrieve sea-surface salinity (SSS) from radiometer data at 1.4 GHz, auxiliary data of sea-surface temperature (SST), surface roughness and meteorological variables are needed. The authors study oceanic passive polarimetric microwave remote sensing using 1.4 GHz and 10.7 GHz bands. A set of algorithms are developed for 1.4 GHz and 10.7 GHz microwave polarimetric radiometer at 50° incidence angle to retrieve wind vector, as well as other geophysical parameters, such as SSS, SST, atmospheric volumes of water vapor and liquid water. Idealized retrievals are conducted using 2 324 simulated brightness temperatures of full Stokes parameters at 1.4 GHz and 10.7 GHz. Results indicate that SSS, SST, sea-surface wind speed, direction, atmospheric volumes of water vapor and liquid water can be inversed at the same time. This suggests an alternative way for SSS remote sensing.