期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
分体滑动导叶可调涡轮激波与载荷波动机制 被引量:1
1
作者 杨登峰 潘俞舟 +2 位作者 王贵召 老大中 HU Leon 《中国机械工程》 EI CAS CSCD 北大核心 2020年第15期1778-1786,共9页
针对某柴油机用可调涡轮在低速工况下的低效强激波特征,提出并设计了一种分体滑动导叶,并在10%、40%和100%3个典型开度下进行了定常/非定常数值计算。结果表明:分体滑动导叶在小开度下可实现对间隙泄漏流动的有效抑制,大幅度提高涡轮效... 针对某柴油机用可调涡轮在低速工况下的低效强激波特征,提出并设计了一种分体滑动导叶,并在10%、40%和100%3个典型开度下进行了定常/非定常数值计算。结果表明:分体滑动导叶在小开度下可实现对间隙泄漏流动的有效抑制,大幅度提高涡轮效率;在10%开度下,分体滑动导叶提高了涡轮10%的峰值效率,同时涡轮效率在40%和全开工况下也有不同程度的提高。此外,通过合理设计转静间距,分体滑动导叶尾缘激波被大幅度削弱。导叶间隙泄漏流和尾缘激波的抑制可有效弱化转子定子干涉强度,降低下游转子叶片表面载荷波动幅值,提高转子叶片的可靠性。 展开更多
关键词 可调涡轮 分体滑动导叶 激波 间隙泄漏流 载荷波动
下载PDF
The Change of the Inlet Geometry of a Centrifugal Compressor Stage and its Influence on the Compressor Performance 被引量:14
2
作者 WANG Leilei YANG Ce +3 位作者 ZHAO Ben lao dazhong MA Chaochen LI Du 《Journal of Thermal Science》 SCIE EI CAS CSCD 2013年第3期197-208,共12页
The impact on the compressor performance is important for designing the inlet pipe of the centrifugal compressor of a vehicle turbocharger with different inlet pipes. First, an experiment was performed to determine th... The impact on the compressor performance is important for designing the inlet pipe of the centrifugal compressor of a vehicle turbocharger with different inlet pipes. First, an experiment was performed to determine the compressor performance from three cases: a straight inlet pipe, a long bent inlet pipe and a short bent inlet pipe. Next, dynamic sensors were installed in key positions to collect the sign of the unsteady pressure of the centrifugal compressor. Combined with the results of numerical simulations, the total pressure distortion in the pipes, the pressure distributions on the blades and the pressure variability in the diffuser are studied in detail. The results can be summarized as follows: a bent pipe results in an inlet distortion to the compressor, which leads to performance degradation, and the effect is more apparent as the mass flow rate increases. The distortion induced by the bent inlet is not only influenced by the distance between the outlet of the bent section and the leading edge of the impeller but also by the impeller rotation. The flow fields in the centrifugal impeller and the diffuser are influenced by a coupling effect produced by the upstream inlet distortion and the downstream blocking effect from the volute tongue. If the inlet geometry is changed, the distributions and the fluctuation intensities of the static pressure on the main blade surface of the centrifugal impeller and in the diffuser are changed accordingly. 展开更多
关键词 CENTRIFUGAL COMPRESSOR INLET pipe distortion main BLADE DIFFUSER
原文传递
Non-axisymmetric Flow Characteristics in Centrifugal Compressor 被引量:7
3
作者 WANG Leilei lao dazhong +1 位作者 LIU Yixiong YANG Ce 《Journal of Thermal Science》 SCIE EI CAS CSCD 2015年第4期313-322,共10页
The flow field distribution in centrifugal compressor is significantly affected by the non-axisymmetric geometry structure of the volute.The experimental and numerical simulation methods were adopted in this work to s... The flow field distribution in centrifugal compressor is significantly affected by the non-axisymmetric geometry structure of the volute.The experimental and numerical simulation methods were adopted in this work to study the compressor flow field distribution with different flow conditions.The results show that the pressure distribution in volute is characterized by the circumferential non-uniform phenomenon and the pressure fluctuation on the high static pressure zone propagates reversely to upstream,which results in the non-axisymmetric flow inside the compressor.The non-uniform level of pressure distribution in large flow condition is higher than that in small flow condition,its effect on the upstream flow field is also stronger.Additionally,the non-uniform circumferential pressure distribution in volute brings the non-axisymmetric flow at impeller outlet.In different flow conditions,the circumferential variation of the absolute flow angle at impeller outlet is also different.Meanwhile,the non-axisymmetric flow characteristics in internal impeller can be also reflected by the distribution of the mass flow.The high static pressure region of the volute corresponds to the decrease of mass flow in upstream blade channel,while the low static pressure zone of the volute corresponds to the increase of the mass flow.In small flow condition,the mass flow difference in the blade channel is bigger than that in the large flow condition. 展开更多
关键词 centrifugal impeller static pressure distortion non-axisymmetric flow mass flow blade loading
原文传递
Forced Responses on a Radial Turbine with Nozzle Guide Vanes 被引量:4
4
作者 LIU Yixiong YANG Ce +1 位作者 MA Chaochen lao dazhong 《Journal of Thermal Science》 SCIE EI CAS CSCD 2014年第2期138-144,共7页
Radial turbines with nozzle guide vanes are widely used in various size turbochargers.However,due to the interferences with guide vanes,the blades of impellers are exposed to intense unsteady aerodynamic excitations,w... Radial turbines with nozzle guide vanes are widely used in various size turbochargers.However,due to the interferences with guide vanes,the blades of impellers are exposed to intense unsteady aerodynamic excitations,which cause blade vibrations and lead to high cycle failures(HCF).Moreover,the harmonic resonance in some frequency regions are unavoidable due to the wide operation conditions.Aiming to achieve a detail insight into vibration characteristics of radial flow turbine,a numerical method based on fluid structure interaction(FSI) is presented.Firstly,the unsteady aerodynamic loads are determined by computational fluid dynamics(CFD).And the fluctuating pressures are transformed from time domain to frequency domain by fast Fourier-transform(FFT).Then,the entire rotor model is adopted to analyze frequencies and mode shapes considering mistuning in finite element(FE) method.Meanwhile,harmonic analyses,applying the pressure fluctuation from CFD,are conducted to investigate the impeller vibration behavior and blade forced response in frequency domain.The prediction of the vibration dynamic stress shows acceptable agreement to the blade actual damage in consistent tendency. 展开更多
关键词 radial turbine forced response modal analysis harmonic resonance
原文传递
Investigation on Inlet Recirculation Characteristics of Double Suction Centrifugal Compressor with Unsymmetrical Inlet 被引量:1
5
作者 YANG Ce WANG Yingjun +3 位作者 lao dazhong TONG Ding WEI Longyu LIU Yixiong 《Journal of Thermal Science》 SCIE EI CAS CSCD 2016年第4期312-324,共13页
The inlet recirculation characteristics of double suction centrifugal compressor with unsymmetrical inlet structures were studied in numerical method,mainly focused on three issues including the amounts and difference... The inlet recirculation characteristics of double suction centrifugal compressor with unsymmetrical inlet structures were studied in numerical method,mainly focused on three issues including the amounts and differences of the inlet recirculation in different working conditions,the circumferential non-uniform distributions of the inlet recirculation,the recirculation velocity distributions of the upstream slot of the rear impeller.The results show that there are some differences between the recirculation of the front impeller and that of the rear impeller in whole working conditions..In design speed,the recirculation flow rate of the rear impeller is larger than that of the front impeller in the large flow range,but in the small flow range,the recirculation flow rate of the rear impeller is smaller than that of the front impeller.In different working conditions,the recirculation velocity distributions of the front and rear impeller are non-uniform along the circumferential direction and their non-uniform extents are quite different.The circumferential non-uniform extent of the recirculation velocity varies with the working conditions change.The circumferential non-uniform extent of the recirculation velocity of front impeller and its distribution are determined by the static pressure distribution of the front impeller,but that of the rear impeller is decided by the coupling effects of the inlet flow distortion of the rear impeller,the circumferential unsymmetrical distribution of the upstream slot and the asymmetric structure of the volute.In the design flow and small flow conditions,the recirculation velocities at different circumferential positions of the mean line of the upstream slot cross-section of the rear impeller are quite different,and the recirculation velocities distribution forms at both sides of the mean line are different.The recirculation velocity distributions in the cross-section of the upstream slot depend on the static pressure distributions in the intake duct. 展开更多
关键词 asymmetric intake double suction centrifugal compressor inlet recirculation recirculation flow circumferential distribution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部