期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多变量概率模型的钻井周期预测方法 被引量:2
1
作者 LUU Quang Hung lau man fai +3 位作者 NG Sebastian P.H. TING Clement P.W. WEE Reuben THEN Patrick H.H. 《石油勘探与开发》 SCIE EI CAS CSCD 北大核心 2021年第4期851-860,共10页
鉴于现有的预测钻井周期的方法忽视了影响钻井周期的关键因素因而精确度有限,提出采用多变量概率法预测钻井周期,并采用实测数据进行了算例分析和验证。利用自适应核密度估计法建立了各主要钻井阶段与深度相关的钻井周期概率模型,结合... 鉴于现有的预测钻井周期的方法忽视了影响钻井周期的关键因素因而精确度有限,提出采用多变量概率法预测钻井周期,并采用实测数据进行了算例分析和验证。利用自适应核密度估计法建立了各主要钻井阶段与深度相关的钻井周期概率模型,结合蒙特卡洛模拟得出了一次完整钻井施工作业的总周期的概率分布。采用该方法对澳大利亚及亚洲地区192口井的钻井周期进行了预测。尽管现有数据记录不全,但经过统计分析发现,模型模拟结果与实测数据的匹配度很高。研究表明,在10%~90%的置信区间内,总钻井周期比无事故钻井周期延长至少4 d,至多12 d。采用该方法可以得到钻至一定深度的可能的施工周期,有利于评价整个钻井施工过程的风险,模拟数据还可以用于机器学习模型的训练。图10表2参34。 展开更多
关键词 钻井周期 多变量概率模型 概率法 马尔科夫链蒙特卡洛方法
下载PDF
Predictability of well construction time with multivariate probabilistic approach
2
作者 LUU Quang-Hung lau man fai +3 位作者 NG Sebastian P.H. TING Clement P.W. WEE Reuben THEN Patrick H.H. 《Petroleum Exploration and Development》 CSCD 2021年第4期987-998,共12页
Current univariate approach to predict the probability of well construction time has limited accuracy due to the fact that it ignores key factors affecting the time.In this study,we propose a multivariate probabilisti... Current univariate approach to predict the probability of well construction time has limited accuracy due to the fact that it ignores key factors affecting the time.In this study,we propose a multivariate probabilistic approach to predict the risks of well construction time.It takes advantage of an extended multi-dimensional Bernacchia–Pigolotti kernel density estimation technique and combines probability distributions by means of Monte-Carlo simulations to establish a depth-dependent probabilistic model.This method is applied to predict the durations of drilling phases of 192 wells,most of which are located in the AustraliaAsia region.Despite the challenge of gappy records,our model shows an excellent statistical agreement with the observed data.Our results suggested that the total time is longer than the trouble-free time by at least 4 days,and at most 12 days within the 10%–90% confidence interval.This model allows us to derive the likelihoods of duration for each phase at a certain depth and to generate inputs for training data-driven models,facilitating evaluation and prediction of the risks of an entire drilling operation. 展开更多
关键词 well construction time multivariate probabilistic modelling probabilistic approach Markov Chain Monte-Carlo
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部