Nearly 97% of organic chemicals in Hong Kong leachate could be effectively removed by the UASB(upflow anaerobic sludge blanket) process followed by the fenton coagulation. The COD of leachate was lowered from an avera...Nearly 97% of organic chemicals in Hong Kong leachate could be effectively removed by the UASB(upflow anaerobic sludge blanket) process followed by the fenton coagulation. The COD of leachate was lowered from an average of 12900 mg/L to 1440 mg/L after the UASB treatment, and was further lowered to 394 mg/L after the fenton coagulation. The remaining refractory residues could be further removed by ozonation with the addition of H 2O 2. The ozonation for the supernatant of the fenton coagulation was most effective at pH 7—8, with the addition of 300 mg/L of H 2O 2, and 30 min of reaction. The final effluent contained only 85 mg/L of COD and l0 mg/L of BOD 5. On the other hand, direct ozonation of UASB effluent lowered the COD to 905 mg/L and BOD 5 to l03 mg/L. Ozonation improved the biodegradability of the organic residues, and also converted part of organic\|N in the leachate into NH 3 N and NO - 3\|N.展开更多
文摘Nearly 97% of organic chemicals in Hong Kong leachate could be effectively removed by the UASB(upflow anaerobic sludge blanket) process followed by the fenton coagulation. The COD of leachate was lowered from an average of 12900 mg/L to 1440 mg/L after the UASB treatment, and was further lowered to 394 mg/L after the fenton coagulation. The remaining refractory residues could be further removed by ozonation with the addition of H 2O 2. The ozonation for the supernatant of the fenton coagulation was most effective at pH 7—8, with the addition of 300 mg/L of H 2O 2, and 30 min of reaction. The final effluent contained only 85 mg/L of COD and l0 mg/L of BOD 5. On the other hand, direct ozonation of UASB effluent lowered the COD to 905 mg/L and BOD 5 to l03 mg/L. Ozonation improved the biodegradability of the organic residues, and also converted part of organic\|N in the leachate into NH 3 N and NO - 3\|N.