期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
可见、近红外光谱和深度学习CNN-ELM算法的煤炭分类 被引量:12
1
作者 le ba tuan 肖冬 +3 位作者 毛亚纯 宋亮 何大阔 刘善军 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2018年第7期2107-2112,共6页
煤是工业的主要能源,煤的品质对工业和环境起决定性作用。在使用煤的过程中,如果不能准确确定煤的品种,有可能对生产效率、环境污染、经济损失等会造成重大的影响。传统的煤分类,主要依靠人工方法和化学分析方法,这些方法的缺点是高成... 煤是工业的主要能源,煤的品质对工业和环境起决定性作用。在使用煤的过程中,如果不能准确确定煤的品种,有可能对生产效率、环境污染、经济损失等会造成重大的影响。传统的煤分类,主要依靠人工方法和化学分析方法,这些方法的缺点是高成本和耗费时间。如何快速准确确定煤的品质很重要。因此,提出深度学习、极限学习机-ELM算法和可见、红外光谱联合建立煤矿分类模型。首先,从抚顺、伊敏和河南夹津口煤矿区采取不同煤样品,并使用美国Spectra Vista公司的SVC HR-1024地物光谱仪测得光谱数据。然后利用深度学习的卷积神经网络-CNN提取光谱特征,并采用ELM算法对光谱数据建立分类模型。最后,为进一步提高分类精度,引入粒子群算法。通过全新定义惯性权重和加速系数的取值范围来改进粒子群算法,并使用改进粒子群算法优化CNN-ELM网络。实验结果表明,和PCA特征提取方法比较,CNN网络能够更好的提取光谱特征,CNN-ELM分类模型有良好的分类效果;改进ELM分类模型的分类精度高于基础ELM和SVM分类模型。与传统的化学分析方法和人工方法相比,此方法在经济、速度、准确性方面均具有无可比的优势。 展开更多
关键词 可见、近红外光谱 卷积神经网络 粒子群 极限学习机
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部