期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于分量稀疏贝叶斯学习的风电场输出功率概率预测方法
被引量:
24
1
作者
杨明
范澍
+1 位作者
韩学山
lee wei-jen
《电力系统自动化》
EI
CSCD
北大核心
2012年第14期125-130,142,共7页
概率预测有别于期望值预测,能够提供被预测量的概率分布信息。文中提出一种基于分量稀疏贝叶斯学习的风电场短期输出功率概率预测方法。该方法采用分量预测方式,应用离散正交小波变换Mallat算法将风电场输出功率分解为体现输出功率变化...
概率预测有别于期望值预测,能够提供被预测量的概率分布信息。文中提出一种基于分量稀疏贝叶斯学习的风电场短期输出功率概率预测方法。该方法采用分量预测方式,应用离散正交小波变换Mallat算法将风电场输出功率分解为体现输出功率变化主趋势的趋势分量和平稳度较好的扰动分量。利用风速与风电场输出功率趋势上较强的相关性,结合趋势分量的自相关性对趋势分量进行预测;同时,根据扰动分量近似平稳的特点,利用其自身的自相关性对扰动分量进行预测。文中基于稀疏贝叶斯学习理论构建预测模型,实现对趋势分量、扰动分量以及原风电场输出功率的概率预测,并通过构建多学习机实现风电场输出功率的多步预测。算例分析部分通过对某处风电场7 200次的连续预测,验证了所提出方法的有效性。
展开更多
关键词
风电预测
概率预测
稀疏贝叶斯学习
离散小波变换
电力系统
下载PDF
职称材料
题名
基于分量稀疏贝叶斯学习的风电场输出功率概率预测方法
被引量:
24
1
作者
杨明
范澍
韩学山
lee wei-jen
机构
山东大学电气工程学院
Monash University(Clayton Campus)
University of Texas at Arlington
出处
《电力系统自动化》
EI
CSCD
北大核心
2012年第14期125-130,142,共7页
基金
国家自然科学基金资助项目(51007047
51077087)
+2 种基金
国家高技术研究发展计划(863计划)资助项目(2011AA05A101)
高等学校博士学科点专项科研基金资助项目(20100131120039)
山东省自然科学基金资助项目(ZR2010EQ035)~~
文摘
概率预测有别于期望值预测,能够提供被预测量的概率分布信息。文中提出一种基于分量稀疏贝叶斯学习的风电场短期输出功率概率预测方法。该方法采用分量预测方式,应用离散正交小波变换Mallat算法将风电场输出功率分解为体现输出功率变化主趋势的趋势分量和平稳度较好的扰动分量。利用风速与风电场输出功率趋势上较强的相关性,结合趋势分量的自相关性对趋势分量进行预测;同时,根据扰动分量近似平稳的特点,利用其自身的自相关性对扰动分量进行预测。文中基于稀疏贝叶斯学习理论构建预测模型,实现对趋势分量、扰动分量以及原风电场输出功率的概率预测,并通过构建多学习机实现风电场输出功率的多步预测。算例分析部分通过对某处风电场7 200次的连续预测,验证了所提出方法的有效性。
关键词
风电预测
概率预测
稀疏贝叶斯学习
离散小波变换
电力系统
Keywords
wind power forecast
probabilistic forecast
sparse Bayesian learning
discrete wavelet transform
power system
分类号
TM614 [电气工程—电力系统及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于分量稀疏贝叶斯学习的风电场输出功率概率预测方法
杨明
范澍
韩学山
lee wei-jen
《电力系统自动化》
EI
CSCD
北大核心
2012
24
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部