期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于时间序列和改进随机森林算法的混凝土价格趋势预测
1
作者 刘庆 黄明浩 lee woon-seek 《运筹与管理》 CSCD 北大核心 2024年第6期132-138,共7页
有效而准确的预测商品混凝土价格变动趋势,对各类建筑的施工规划具有重要意义。相比其他预测模型,随机森林模型具有更高的预测精度。然而不同的数据结构都有其独特之处,针对特定数据结构进行模型优化,有助于提高算法在特定数据上的处理... 有效而准确的预测商品混凝土价格变动趋势,对各类建筑的施工规划具有重要意义。相比其他预测模型,随机森林模型具有更高的预测精度。然而不同的数据结构都有其独特之处,针对特定数据结构进行模型优化,有助于提高算法在特定数据上的处理性能。我们针对时间序列分类(TSC:Time Series Classification)的特征提出一种改进随机森林算法。首先将随机森林创建训练子集时的随机抽样调整为倾斜抽样,然后将决策树分裂时的随机特征向量抽样调整为分层抽样,最后以加权投票取代平均投票。实证结果表明相比原始随机森林算法,改进模型具有明显优势,对商品混凝土价格变动的预测准确率达98.4%,预测精度、召回率和F1评分分别为:98.7%,98.2%,98.4%,可以实现了商品混凝土价格变动趋势的精准预测。 展开更多
关键词 价格趋势预测 时间序列分类 优化 混凝土
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部