In this paper, four point bending tests were carried out to investigate the flexural properties of PVA fiber reinforced engineered cementitious composites (ECC) with different mix proportions. Based on the test result...In this paper, four point bending tests were carried out to investigate the flexural properties of PVA fiber reinforced engineered cementitious composites (ECC) with different mix proportions. Based on the test results, the flexural toughness was evaluated with the methods of JSCE and post crack strength method (PCSm), respectively. Several parameters such as amount of water reducer, amount of sand, and fiber volume fraction were investigated to study their effects on the flexural toughness of ECC beams. According to the test results, superfluous water reducing additions can cause adverse effect on strength of the matrix and interfacial bond between fibers and the matrix, resulting in decreased bending strength and flexural toughness of ECC beams. Increase of the fiber volume fraction can result in increased flexural strength and toughness due to enhanced bridging effect between fibers and cementitious matrix. High amount of sand can reduce ductility and strain hardening behavior of ECC material, and better flexural toughness can be achieved when the amount of sand by weight is set to 0.2 for current water/cement ratio.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 50808043)the National Basic Research Program of China ("973" Program) (Grant No. 2009CB623200)the Priority Academic Program Development of Jiangsu Higher Education Institutions and Jiangsu Key Laboratory of Construction Materials
文摘In this paper, four point bending tests were carried out to investigate the flexural properties of PVA fiber reinforced engineered cementitious composites (ECC) with different mix proportions. Based on the test results, the flexural toughness was evaluated with the methods of JSCE and post crack strength method (PCSm), respectively. Several parameters such as amount of water reducer, amount of sand, and fiber volume fraction were investigated to study their effects on the flexural toughness of ECC beams. According to the test results, superfluous water reducing additions can cause adverse effect on strength of the matrix and interfacial bond between fibers and the matrix, resulting in decreased bending strength and flexural toughness of ECC beams. Increase of the fiber volume fraction can result in increased flexural strength and toughness due to enhanced bridging effect between fibers and cementitious matrix. High amount of sand can reduce ductility and strain hardening behavior of ECC material, and better flexural toughness can be achieved when the amount of sand by weight is set to 0.2 for current water/cement ratio.