Multi-layer sandstone reservoirs occur globally and are currently in international production. The 3D characteristics of these reservoirs are too complicated to be accurately delineated by general structural-facies-re...Multi-layer sandstone reservoirs occur globally and are currently in international production. The 3D characteristics of these reservoirs are too complicated to be accurately delineated by general structural-facies-reservoir modelling. In view of the special geological features, such as the vertical architecture of sandstone and mudstone interbeds, the lateral stable sedimentation and the strong heterogeneity of reservoir poroperm and fluid distribution, we developed a new three-stage and six-phase procedure for 3D characterization of multi-layer sandstone reservoirs. The procedure comprises two-phase structural modelling, two-phase facies modelling and modelling of two types of reservoir properties. Using this procedure, we established models of the formation structure, sand body structure and microfacies, reservoir facies and properties including porosity, permeability and gas saturation and provided a 3D fine-scale, systematic characterization of the Sebei multi-layer sandstone gas field, China. This new procedure, validated by the Sebei gas field, can be applied to characterize similar multi-layer sandstone reservoirs.展开更多
The typical characteristics of shale gas and the enrichment differences show that some shale gases are insufficiently explained by the existing continuous enrichment mode. These shale gases include the Wufeng–Longmax...The typical characteristics of shale gas and the enrichment differences show that some shale gases are insufficiently explained by the existing continuous enrichment mode. These shale gases include the Wufeng–Longmaxi shale gas in the Jiaoshiba and Youyang Blocks, the Lewis shale gas in the San Juan Basin. Further analysis reveals three static subsystems(hydrocarbon source rock, gas reservoirs and seal formations) and four dynamic subsystems(tectonic evolution, sedimentary sequence, diagenetic evolution and hydrocarbon-generation history) in shale-gas enrichment systems. Tectonic evolution drives the dynamic operation of the whole shale-gas enrichment system. The shale-gas enrichment modes controlled by tectonic evolution are classifiable into three groups and six subgroups. Group I modes are characterized by tectonically controlled hydrocarbon source rock, and include continuous in-situ biogenic shale gas(Ⅰ_1) and continuous in-situ thermogenic shale gas(Ⅰ_2). Group Ⅱ modes are characterized by tectonically controlled gas reservoirs, and include anticline-controlled reservoir enrichment(Ⅱ_1) and fracture-controlled reservoir enrichment(Ⅱ_2). Group Ⅲ modes possess tectonically controlled seal formations, and include faulted leakage enrichment(Ⅲ_1) and eroded residual enrichment(Ⅲ_2). In terms of quantity and exploitation potential, Ⅰ_1 and Ⅰ_2 are the best shale-gas enrichment modes, followed by Ⅱ_1 and Ⅱ_2. The least effective modes are Ⅲ_1 and Ⅲ_2. The categorization provides a different perspective for deep shale-gas exploration.展开更多
This study carried out detailed structural analyses of the plane structural deformation pattern and sectional structural deformation styles of the Fauqi Anticline by the 3D seismic section with full cover collection, ...This study carried out detailed structural analyses of the plane structural deformation pattern and sectional structural deformation styles of the Fauqi Anticline by the 3D seismic section with full cover collection, and carried out the kinematical simulation of the Fauqi anticlinal deep decollement coupling shallow growth folds and faults based on the fault decollement fold model and the forward balanced geological section technique. The study subsequently evaluated the differentiated petroleum enrichment mechanism of the Fauqi Anticline by utilizing the results of the structural analysis and combining the spatial-temporal relationship analysis of the source, the reservoir, and the caprock. The results showed that the differentiated plane structural deformation pattern and hierarchical sectional structural deformation style were developed by the superposed coupling of deep decollement, syntectonic sedimentation of shallow growth strata, and the compression of the south-west horizontal tectonic stress from the Zagros Mountains. It was found that the differentiated structural deformation caused the differentiated enrichment of petroleum in the Fauqi Anticline. It was also found that the horizontal slip distance of the Fauqi Anticlinal Folds reached around 3.5 km by the simulation of deep decollement coupling the movement of the shallow growth folds and the faults.展开更多
基金granted by the National Basic Research Program of China(grant no.2014CB239205)National Science and Technology Major Project of China (grant no.20011ZX05030-005-003)
文摘Multi-layer sandstone reservoirs occur globally and are currently in international production. The 3D characteristics of these reservoirs are too complicated to be accurately delineated by general structural-facies-reservoir modelling. In view of the special geological features, such as the vertical architecture of sandstone and mudstone interbeds, the lateral stable sedimentation and the strong heterogeneity of reservoir poroperm and fluid distribution, we developed a new three-stage and six-phase procedure for 3D characterization of multi-layer sandstone reservoirs. The procedure comprises two-phase structural modelling, two-phase facies modelling and modelling of two types of reservoir properties. Using this procedure, we established models of the formation structure, sand body structure and microfacies, reservoir facies and properties including porosity, permeability and gas saturation and provided a 3D fine-scale, systematic characterization of the Sebei multi-layer sandstone gas field, China. This new procedure, validated by the Sebei gas field, can be applied to characterize similar multi-layer sandstone reservoirs.
基金supported by the National Basic Research Program of China(grant No.2014CB239205)the sub-project of the National Science and Technology Major Project(grant No.2017ZX05035003)
文摘The typical characteristics of shale gas and the enrichment differences show that some shale gases are insufficiently explained by the existing continuous enrichment mode. These shale gases include the Wufeng–Longmaxi shale gas in the Jiaoshiba and Youyang Blocks, the Lewis shale gas in the San Juan Basin. Further analysis reveals three static subsystems(hydrocarbon source rock, gas reservoirs and seal formations) and four dynamic subsystems(tectonic evolution, sedimentary sequence, diagenetic evolution and hydrocarbon-generation history) in shale-gas enrichment systems. Tectonic evolution drives the dynamic operation of the whole shale-gas enrichment system. The shale-gas enrichment modes controlled by tectonic evolution are classifiable into three groups and six subgroups. Group I modes are characterized by tectonically controlled hydrocarbon source rock, and include continuous in-situ biogenic shale gas(Ⅰ_1) and continuous in-situ thermogenic shale gas(Ⅰ_2). Group Ⅱ modes are characterized by tectonically controlled gas reservoirs, and include anticline-controlled reservoir enrichment(Ⅱ_1) and fracture-controlled reservoir enrichment(Ⅱ_2). Group Ⅲ modes possess tectonically controlled seal formations, and include faulted leakage enrichment(Ⅲ_1) and eroded residual enrichment(Ⅲ_2). In terms of quantity and exploitation potential, Ⅰ_1 and Ⅰ_2 are the best shale-gas enrichment modes, followed by Ⅱ_1 and Ⅱ_2. The least effective modes are Ⅲ_1 and Ⅲ_2. The categorization provides a different perspective for deep shale-gas exploration.
基金supported by the National Basic Research Program of China (Grant No. 2014CB239201)the National Science and Technology Major Project (Grant No. 2011ZX05030-005-03)
文摘This study carried out detailed structural analyses of the plane structural deformation pattern and sectional structural deformation styles of the Fauqi Anticline by the 3D seismic section with full cover collection, and carried out the kinematical simulation of the Fauqi anticlinal deep decollement coupling shallow growth folds and faults based on the fault decollement fold model and the forward balanced geological section technique. The study subsequently evaluated the differentiated petroleum enrichment mechanism of the Fauqi Anticline by utilizing the results of the structural analysis and combining the spatial-temporal relationship analysis of the source, the reservoir, and the caprock. The results showed that the differentiated plane structural deformation pattern and hierarchical sectional structural deformation style were developed by the superposed coupling of deep decollement, syntectonic sedimentation of shallow growth strata, and the compression of the south-west horizontal tectonic stress from the Zagros Mountains. It was found that the differentiated structural deformation caused the differentiated enrichment of petroleum in the Fauqi Anticline. It was also found that the horizontal slip distance of the Fauqi Anticlinal Folds reached around 3.5 km by the simulation of deep decollement coupling the movement of the shallow growth folds and the faults.