Zinc(Zn),a widespread metal in the Earth’s crust,serves as a crucial nutrient in the Southern Ocean’s primary production.Studies on Zn in Antarctic snow and ice offer insights into the origins of this metal and its ...Zinc(Zn),a widespread metal in the Earth’s crust,serves as a crucial nutrient in the Southern Ocean’s primary production.Studies on Zn in Antarctic snow and ice offer insights into the origins of this metal and its transport routes,as well as its impact on the biogeochemical processes within the Antarctic atmosphere–land–ocean system.This review examines research on the spatial and temporal distribution of Zn in Antarctic snow and ice,as well as in Southern Ocean waters.It includes an overview of advanced methods for sampling and analyzing Zn,along with explanations for the observed variations.The review also discusses various sources of Zn as a nutrient to the Southern Ocean.Finally,it addresses prospective issues related to the use of Zn isotopes in identifying atmospheric sources and their biogeochemical effects on the development of the Southern Ocean ecosystem.展开更多
The effects of various precipitation types,such as snow,rain,sleet,hail and freezing rain,on regional hydrology,ecology,snow and ice surfaces differ significantly.Due to limited observations,however,few studies into p...The effects of various precipitation types,such as snow,rain,sleet,hail and freezing rain,on regional hydrology,ecology,snow and ice surfaces differ significantly.Due to limited observations,however,few studies into precipitation types have been conducted in the Arctic.Based on the high-resolution precipitation records from an OTT Parsivel^(2) disdrometer in Utqiaġvik,Alaska,this study analysed variations in precipitation types in the Alaskan Arctic from 15 May to 16 October,2019.Results show that rain and snow were the dominant precipitation types during the measurement period,accounting for 92%of the total precipitation.In addition,freezing rain,sleet,and hail were also observed(2,4 and 11 times,respectively),accounting for the rest part of the total precipitation.The records from a neighbouring U.S.Climate Reference Network(USCRN)station equipped with T-200B rain gauges support the results of disdrometer.Further analysis revealed that Global Precipitation Measurement(GPM)satellite data could well characterise the observed precipitation changes in Utqiaġvik.Combined with satellite data and station observations,the spatiotemporal variations in precipitation were verified in various reanalysis datasets,and the results indicated that ECMWF Reanalysis v5(ERA5)could better describe the observed precipitation time series in Utqiaġvik and the spatial distribution of data in the Alaskan Arctic.Modern-Era Retrospective analysis for Research and Applications,Version 2(MERRA-2)overestimated the amount and frequency of precipitation.Japanese 55-year Reanalysis(JRA-55)could better simulate heavy precipitation events and the spatial distribution of the precipitation phase,but it overestimated summer snowfall.展开更多
Elemental carbon(or black carbon)(EC or BC)aerosols emitted by biomass burning and fossil fuel combustion could cause notable climate forcing.Southern Hemisphere biomass burning emissions have contributed substantiall...Elemental carbon(or black carbon)(EC or BC)aerosols emitted by biomass burning and fossil fuel combustion could cause notable climate forcing.Southern Hemisphere biomass burning emissions have contributed substantially to EC deposition in Antarctica.Here,we present the seasonal variation of EC determined from aerosol samples acquired at Zhongshan Station(ZSS),East Antarctica.The concentration of EC in the atmosphere varied between 0.02 and 257.81 ng·m^(-3)with a mean value of 44.87±48.92 ng·m^(-3).The concentration of EC aerosols reached its peak in winter(59.04 ng·m^(-3))and was lowest(27.26 ng·m^(-3))in summer.Back trajectory analysis showed that biomass burning in southern South America was the major source of the EC found at ZSS,although some of it was derived from southern Australia,especially during winter.The 2019–2020 Australian bush fires had some influence on EC deposition at ZSS,especially during 2019,but the contribution diminished in 2020,leaving southern South America as the dominant source of EC.展开更多
Based on stake measurements conducted along the Chinese Antarctic traverse since Jan.1999,we investigated the characteristics of surface mass balance(SMB)and related climate consequences from Zhongshan Station to Dome...Based on stake measurements conducted along the Chinese Antarctic traverse since Jan.1999,we investigated the characteristics of surface mass balance(SMB)and related climate consequences from Zhongshan Station to Dome A,East Antarctica.Spatial analysis suggests that post-depositional processes have a great impact on surface morphology;thus,the representativeness of a single measurement should be discussed in conjunction with local climate features.The comparison among snow accumulation,ice sheet thickness,surface elevation,and ice velocity indicates that the bedrock topography has an indirect connection with the SMB patterns through controlling the surface topography and local climate.The observation reveals that the Lambert Glacier Basin has been experiencing increasing mass input(4.5%),whereas the inland area has experienced a 6%loss,since 2005.An overall estimation of the SMB along the route is 71.3±44.3 kg m?2 a?1,but the annual and regional variation is considerable.Tendency analysis shows that there are four sections with different SMB patterns as a result of three moisture sources and surface climatic discrepancy in the Antarctic inland.This study is the first to identify four SMB patterns from the coast to the Dome area and should provide a valuable contribution to modeling and remote sensing on a continental scale.展开更多
Nitrate,an oxidized product of NO x preserved in the polar ice cores,has often been used to estimate past changes of the atmospheric nitrogen cycle.A 102.65 m ice core drilled at DT-401(79°01'S,77°00'...Nitrate,an oxidized product of NO x preserved in the polar ice cores,has often been used to estimate past changes of the atmospheric nitrogen cycle.A 102.65 m ice core drilled at DT-401(79°01'S,77°00'E) in 1999 provides an opportunity to investigate the possible influencing factors for the nitrate budget in the eastern Antarctica.We studied the relationship between the δ18O(representing the temperature),accumulation rate,volcanic deposition and the astronomical factors(such as the solar activities,supernovae,etc.),and the nitrate variation along the whole duration(2680-year) of the ice core.Prominent impacts of the accumulation rate acting on the nitrate flux rather than the concentration were detected.However,no significant correlation was found between the δ18O and the nitrate deposition characteristics(concentration and the flux variations).Volcanic deposition can significantly affect the deposition of nitrate with a decreasing trend accompanied by the nss-SO42(volcanic signal) peak values.Impacts of the solar activities on the nitrate deposition can be detected at this site,and three prominent periodicities(16.6,24.0 and 102.0 yr) were found for the nitrate concentration variations.Six climatic events(Dalton Minimum,Maunder Minimum,Sporer Minimum,Wolf Minimum,Oort Minimum and Medieval Maximum) during the past 1150 years were observed with lower nitrate values for the foregoing five events and higher value for the last one.展开更多
Long time series of Antarctic sea ice extent (SIE) are important for climate research and model forecasting. A historic ice extent in the Ross Sea in early austral winter was rebuilt through sea salt ions in the DT4...Long time series of Antarctic sea ice extent (SIE) are important for climate research and model forecasting. A historic ice extent in the Ross Sea in early austral winter was rebuilt through sea salt ions in the DT401 ice core in interior East Antarctica. El Nino-Southern Oscillation (ENSO) had a significant influence on the sea salt deposition in DT401 through its influence on the Ross Sea SIE and the transport of sea salt inland. Spectral analysis also supported the influence of ENSO with a significant 2-6 a periodicity band. In addition, statistically significant decadal (10 a) and pentadecadal (50-70 a) periodicities suggested the existence of a teleconnection from the Pacific decadal oscillation (PDO), which originated from sea surface temperature anomalies in the tropical Pacific Ocean. The first eigenvector of the empirical orthogonal function analysis (EOF1) showed lower values during the Medieval Warm Period (MWP), while higher values were found in the Little Ice Age (LIA). A higher frequency of ENSO events were found in the cold climatic stage, The post 1800 AD period was occupied by significant fluctuations of the EOF1, and PDO may be one of the influencing factors. The EOF1 values showed moderate fluctuations from 680 BC to 1000 AD, showing that the climate was relatively stable in this period.展开更多
A 109.9 m ice core was extracted at a location about 300 m away from the Dome A summit (80°00′S, 77°21″E) by the Chinese team of the International Trans-Antarctic Science Expedition (ITASE) during the ...A 109.9 m ice core was extracted at a location about 300 m away from the Dome A summit (80°00′S, 77°21″E) by the Chinese team of the International Trans-Antarctic Science Expedition (ITASE) during the 21st Chinese National Antarctica Research Expedition (CHINARE) in January 2005. Two independent methods were used for dating the ice core, volcanic event markers shown by prominent non-sea-salt sulfate (nss-SO4^2-) and the Herron and Langway (H-L) firn densification model. Six promi- nent volcanic events (Agung 1963 AD, Tambora 1815 AD, Kuwae 1453 AD, Unknown 1259 AD, Taupo 186 AD and Pinatubo 1050 BC) were identified by comparison with other Antarctic ice cores. Based on the mean accumulation rates be- tween adjacent events, we estimate the age at the tim pore close-off depth (102 m) was 3516±100 a BP. This is the oldest close-off age ever reported from the Antarctic and the Greenland ice sheets. Calculations using the H-L model show that the age at the same depth is 3581±100 a BP. The two dating techniques differ by 65 years, or -1.8% of the record. We calculated the bottom age of the ice core as 4009±150 a BP using the volcanic dating method and 4115±150 a BP using the H-L model method.展开更多
基金supported by the National Natural Science Foundation of China(Grant nos.42176240 and 42101142).
文摘Zinc(Zn),a widespread metal in the Earth’s crust,serves as a crucial nutrient in the Southern Ocean’s primary production.Studies on Zn in Antarctic snow and ice offer insights into the origins of this metal and its transport routes,as well as its impact on the biogeochemical processes within the Antarctic atmosphere–land–ocean system.This review examines research on the spatial and temporal distribution of Zn in Antarctic snow and ice,as well as in Southern Ocean waters.It includes an overview of advanced methods for sampling and analyzing Zn,along with explanations for the observed variations.The review also discusses various sources of Zn as a nutrient to the Southern Ocean.Finally,it addresses prospective issues related to the use of Zn isotopes in identifying atmospheric sources and their biogeochemical effects on the development of the Southern Ocean ecosystem.
基金This study is funded by the National Key Research and Development Program of China(Grant no.2018YFC1406103)the National Nature Science Foundation of China(Grant no.NSFC 41971084).
文摘The effects of various precipitation types,such as snow,rain,sleet,hail and freezing rain,on regional hydrology,ecology,snow and ice surfaces differ significantly.Due to limited observations,however,few studies into precipitation types have been conducted in the Arctic.Based on the high-resolution precipitation records from an OTT Parsivel^(2) disdrometer in Utqiaġvik,Alaska,this study analysed variations in precipitation types in the Alaskan Arctic from 15 May to 16 October,2019.Results show that rain and snow were the dominant precipitation types during the measurement period,accounting for 92%of the total precipitation.In addition,freezing rain,sleet,and hail were also observed(2,4 and 11 times,respectively),accounting for the rest part of the total precipitation.The records from a neighbouring U.S.Climate Reference Network(USCRN)station equipped with T-200B rain gauges support the results of disdrometer.Further analysis revealed that Global Precipitation Measurement(GPM)satellite data could well characterise the observed precipitation changes in Utqiaġvik.Combined with satellite data and station observations,the spatiotemporal variations in precipitation were verified in various reanalysis datasets,and the results indicated that ECMWF Reanalysis v5(ERA5)could better describe the observed precipitation time series in Utqiaġvik and the spatial distribution of data in the Alaskan Arctic.Modern-Era Retrospective analysis for Research and Applications,Version 2(MERRA-2)overestimated the amount and frequency of precipitation.Japanese 55-year Reanalysis(JRA-55)could better simulate heavy precipitation events and the spatial distribution of the precipitation phase,but it overestimated summer snowfall.
基金provided by the State Key Laboratory of Cryospheric Science Supporting Fund in China(Grant no.SKLCS-ZZ-2020)Innovative Research Group in China(Grant no.1110000001)+1 种基金Strategic Priority Research Program of the Chinese Academy of Sciences(Grant no.XDA19070501)National Natural Science Foundation of China(Grant nos.41671063,41701071,41671073)。
文摘Elemental carbon(or black carbon)(EC or BC)aerosols emitted by biomass burning and fossil fuel combustion could cause notable climate forcing.Southern Hemisphere biomass burning emissions have contributed substantially to EC deposition in Antarctica.Here,we present the seasonal variation of EC determined from aerosol samples acquired at Zhongshan Station(ZSS),East Antarctica.The concentration of EC in the atmosphere varied between 0.02 and 257.81 ng·m^(-3)with a mean value of 44.87±48.92 ng·m^(-3).The concentration of EC aerosols reached its peak in winter(59.04 ng·m^(-3))and was lowest(27.26 ng·m^(-3))in summer.Back trajectory analysis showed that biomass burning in southern South America was the major source of the EC found at ZSS,although some of it was derived from southern Australia,especially during winter.The 2019–2020 Australian bush fires had some influence on EC deposition at ZSS,especially during 2019,but the contribution diminished in 2020,leaving southern South America as the dominant source of EC.
基金supported by National Basic Research Program of China(Grant No.2013CBA01804)the National Natural Science Foundation of China(Grant Nos.41206179,41425003)+2 种基金the State Oceanic Administration of the People’s Republic of China Project on Climate in Polar Regions(Grant Nos.CHINARE2012-02-02,CHINARE2012-04-04)the State Key Laboratory of Cryospheric Sciences Opening Fund(Grant No.SKLCS 2012-01)the logistical and financial support provided by Chinese National Antarctic Research Expedition(Grant No.IC201311)
文摘Based on stake measurements conducted along the Chinese Antarctic traverse since Jan.1999,we investigated the characteristics of surface mass balance(SMB)and related climate consequences from Zhongshan Station to Dome A,East Antarctica.Spatial analysis suggests that post-depositional processes have a great impact on surface morphology;thus,the representativeness of a single measurement should be discussed in conjunction with local climate features.The comparison among snow accumulation,ice sheet thickness,surface elevation,and ice velocity indicates that the bedrock topography has an indirect connection with the SMB patterns through controlling the surface topography and local climate.The observation reveals that the Lambert Glacier Basin has been experiencing increasing mass input(4.5%),whereas the inland area has experienced a 6%loss,since 2005.An overall estimation of the SMB along the route is 71.3±44.3 kg m?2 a?1,but the annual and regional variation is considerable.Tendency analysis shows that there are four sections with different SMB patterns as a result of three moisture sources and surface climatic discrepancy in the Antarctic inland.This study is the first to identify four SMB patterns from the coast to the Dome area and should provide a valuable contribution to modeling and remote sensing on a continental scale.
基金supported by the Foundation for Excellent Youth Scholars of CAREERI,CASthe National Natural Science Foundation of China(Grant Nos.40776002,40825017,41171052)+2 种基金the Hundred Talent Project of Chinese Academy of Sciencesthe Polar Scientific Explore Organizing Committee Foundation (Grant Nos.20080202&0852H71001)State Oceanic Administration of People's Republic of China Project on Climate in Polar Regions(Grant Nos.CHINARE2012-04-04 and CHINARE2012-02-02)
文摘Nitrate,an oxidized product of NO x preserved in the polar ice cores,has often been used to estimate past changes of the atmospheric nitrogen cycle.A 102.65 m ice core drilled at DT-401(79°01'S,77°00'E) in 1999 provides an opportunity to investigate the possible influencing factors for the nitrate budget in the eastern Antarctica.We studied the relationship between the δ18O(representing the temperature),accumulation rate,volcanic deposition and the astronomical factors(such as the solar activities,supernovae,etc.),and the nitrate variation along the whole duration(2680-year) of the ice core.Prominent impacts of the accumulation rate acting on the nitrate flux rather than the concentration were detected.However,no significant correlation was found between the δ18O and the nitrate deposition characteristics(concentration and the flux variations).Volcanic deposition can significantly affect the deposition of nitrate with a decreasing trend accompanied by the nss-SO42(volcanic signal) peak values.Impacts of the solar activities on the nitrate deposition can be detected at this site,and three prominent periodicities(16.6,24.0 and 102.0 yr) were found for the nitrate concentration variations.Six climatic events(Dalton Minimum,Maunder Minimum,Sporer Minimum,Wolf Minimum,Oort Minimum and Medieval Maximum) during the past 1150 years were observed with lower nitrate values for the foregoing five events and higher value for the last one.
基金financially supported by the National Natural Science Foundation of China(Grant No.41121001)National Basic Research Program of China(Grant No.2013CBA01804)+2 种基金State Key Laboratory of Cryospheric Sciences,National Natural Science Foundation of China(Grant No.41201069)State Oceanic Administration of People’s Republic of China Project on Climate in Polar Regions(Grant Nos.CHINARE 2014-04-04,CHINARE 2014-02-02)the Foundation for Excellent Youth Scholars of CAREERI,CAS
文摘Long time series of Antarctic sea ice extent (SIE) are important for climate research and model forecasting. A historic ice extent in the Ross Sea in early austral winter was rebuilt through sea salt ions in the DT401 ice core in interior East Antarctica. El Nino-Southern Oscillation (ENSO) had a significant influence on the sea salt deposition in DT401 through its influence on the Ross Sea SIE and the transport of sea salt inland. Spectral analysis also supported the influence of ENSO with a significant 2-6 a periodicity band. In addition, statistically significant decadal (10 a) and pentadecadal (50-70 a) periodicities suggested the existence of a teleconnection from the Pacific decadal oscillation (PDO), which originated from sea surface temperature anomalies in the tropical Pacific Ocean. The first eigenvector of the empirical orthogonal function analysis (EOF1) showed lower values during the Medieval Warm Period (MWP), while higher values were found in the Little Ice Age (LIA). A higher frequency of ENSO events were found in the cold climatic stage, The post 1800 AD period was occupied by significant fluctuations of the EOF1, and PDO may be one of the influencing factors. The EOF1 values showed moderate fluctuations from 680 BC to 1000 AD, showing that the climate was relatively stable in this period.
基金supported by National Natural Scientific Foundation of China (Grant Nos.40776002,40825017,41171052)the Hundred Talent Project of Chinese Academy of Sciences,the Polar Scientific Explore Organizing Committee Foundation (Grant Nos. 20080202,0852H71001)State Oceanic Administration of People’s Republic of China Project on Climate in Polar Regions (Grant Nos.CHINARE2012-04-04 and CHINARE2012- 02-02)
文摘A 109.9 m ice core was extracted at a location about 300 m away from the Dome A summit (80°00′S, 77°21″E) by the Chinese team of the International Trans-Antarctic Science Expedition (ITASE) during the 21st Chinese National Antarctica Research Expedition (CHINARE) in January 2005. Two independent methods were used for dating the ice core, volcanic event markers shown by prominent non-sea-salt sulfate (nss-SO4^2-) and the Herron and Langway (H-L) firn densification model. Six promi- nent volcanic events (Agung 1963 AD, Tambora 1815 AD, Kuwae 1453 AD, Unknown 1259 AD, Taupo 186 AD and Pinatubo 1050 BC) were identified by comparison with other Antarctic ice cores. Based on the mean accumulation rates be- tween adjacent events, we estimate the age at the tim pore close-off depth (102 m) was 3516±100 a BP. This is the oldest close-off age ever reported from the Antarctic and the Greenland ice sheets. Calculations using the H-L model show that the age at the same depth is 3581±100 a BP. The two dating techniques differ by 65 years, or -1.8% of the record. We calculated the bottom age of the ice core as 4009±150 a BP using the volcanic dating method and 4115±150 a BP using the H-L model method.