期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
果桑菌核病防治用药对家蚕生长发育的影响 被引量:1
1
作者 吴凡 李德臣 +1 位作者 贺真 陈登松 《生物学杂志》 CAS CSCD 北大核心 2021年第6期45-48,共4页
为探讨果桑菌核病防治用药对家蚕生长发育的影响,对二龄起蚕分别添食多菌灵可湿性粉剂、腐霉利可湿性粉剂和甲基硫菌灵可湿性粉剂,持续添食至上蔟结茧,添食清水作为对照,分析添食对家蚕生长发育、龄期经过、五龄盛食期体重、茧质成绩的... 为探讨果桑菌核病防治用药对家蚕生长发育的影响,对二龄起蚕分别添食多菌灵可湿性粉剂、腐霉利可湿性粉剂和甲基硫菌灵可湿性粉剂,持续添食至上蔟结茧,添食清水作为对照,分析添食对家蚕生长发育、龄期经过、五龄盛食期体重、茧质成绩的影响,并测定了五龄第4天幼虫中肠CAT和POD酶的活性。结果发现:添食甲基硫菌灵可湿性粉剂的家蚕幼虫无法完成世代发育,在二龄期死亡;添食多菌灵可湿性粉剂和腐霉利可湿性粉剂的家蚕可正常发育至上蔟结茧;添食多菌灵可湿性粉剂的家蚕龄期经过缩短,而腐霉利可湿性粉剂的家蚕龄期经过增加;添食多菌灵和腐霉利可湿性粉剂的家蚕体重均变小,对家蚕的茧质成绩造成一定的影响,五龄第4天家蚕中肠内CAT和PAD酶活力均升高。因此,在果叶兼用桑园菌核病的防治用药中,应禁止使用甲基硫菌灵可湿性粉剂,可用多菌灵可湿性粉剂和腐霉利可湿性粉剂进行防治。 展开更多
关键词 果桑菌核病 家蚕 多菌灵 甲基硫菌灵 腐霉利
下载PDF
家蚕杂交新组合实验室饲养鉴定试验
2
作者 吴凡 李德臣 +2 位作者 郝瑜 肖胜武 陈登松 《北方蚕业》 2018年第3期30-32,共3页
2017年秋季,对湖北省农科院经济作物研究所的7对家蚕新组合进行了实验室鉴定。7对家蚕新组合均发育整齐、上蔟齐涌,全茧量、茧层量、茧层率、万头蚕茧层量性状指标超过对照品种,其茧丝质优良,综合经济性状以菁9×镇J2品种表现突出。
关键词 家蚕 新组合 饲养鉴定
下载PDF
2018年春季湖北蚕区桑蚕新品种实验室鉴定报告
3
作者 李德臣 吴凡 陈登松 《北方蚕业》 2018年第4期31-33,共3页
2018年春季,以菁松×皓月作为对照,对苏婴×熙阳、鲁87×鲁88、Z831×Z842共3对桑蚕新品种进行了实验室鉴定。观察了解新品种在催青、饲养中的性状表现,调查这几对品种的茧质及丝质成绩,概述其综合经济性状。
关键词 桑蚕品种 实验室鉴定 性状表现
下载PDF
一种基于通信矩阵的汽车电子电气系统建模方法 被引量:1
4
作者 李德辰 孙知信 濮阳 《科技资讯》 2021年第5期88-90,共3页
在汽车电子电气设计制造领域,基于模型的系统工程思想已经开始逐步取代传统基于文档的设计开发流程。面向PR EEv ison使用的EEA分层模型架构,该文设计实现了一种基于通信矩阵的快速建模方案,采用PREEvison的二次开发功能进行总线通信网... 在汽车电子电气设计制造领域,基于模型的系统工程思想已经开始逐步取代传统基于文档的设计开发流程。面向PR EEv ison使用的EEA分层模型架构,该文设计实现了一种基于通信矩阵的快速建模方案,采用PREEvison的二次开发功能进行总线通信网络和软硬件网络拓扑的自动化建模。该文提出的方法在工程实践中,显著提高了相关车型平台的建模工作效率并为相关设计企业将现有设计文档转化为可复用的数据模型。 展开更多
关键词 汽车电子电气 基于模型的系统工程 PREEvision 通信矩阵
下载PDF
软体机器人拓扑优化设计研究进展
5
作者 罗凯 李德臣 +1 位作者 陈世通 陈飞飞 《机器人》 EI CSCD 北大核心 2024年第2期219-233,共15页
软体机器人在非结构化环境作业任务中极具潜力,但其驱动-结构一体化特性令结构设计问题颇具挑战性。相较于经验设计和仿生设计思路,拓扑优化方法从数学上实现了结构严密演化,可为设计问题提供新思路。本文聚焦于软体机器人拓扑优化设计... 软体机器人在非结构化环境作业任务中极具潜力,但其驱动-结构一体化特性令结构设计问题颇具挑战性。相较于经验设计和仿生设计思路,拓扑优化方法从数学上实现了结构严密演化,可为设计问题提供新思路。本文聚焦于软体机器人拓扑优化设计的研究进展。首先,对软体机器人的变形行为与力交互特性两类基本设计问题进行简要描述,进而阐述拓扑优化思想以及主要的拓扑优化方法,然后列举各类软体驱动器的典型设计案例,最后系统概述软体机器人拓扑优化设计中存在的挑战与技术难点。 展开更多
关键词 软体机器人 结构设计 拓扑优化 驱动-结构一体化
原文传递
Enhancing interaction performance of soft pneumatic-networks grippers by skeleton topology optimization 被引量:5
6
作者 CHEN ShiTong WANG YuSheng +2 位作者 li dechen CHEN FeiFei ZHU XiangYang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第12期2709-2717,共9页
The inherent compliance of soft materials imbues robots,generally referred to as soft robots,with particular advantages in producing adaptive and safe interactions.However,the mainstream design paradigms of soft robot... The inherent compliance of soft materials imbues robots,generally referred to as soft robots,with particular advantages in producing adaptive and safe interactions.However,the mainstream design paradigms of soft robots have been focused on pursuing large free motions only,usually at the expense of greatly decreased stiffness,leading to limited capability of withstanding external loads in interactive scenarios.There is a pressing need to incorporate the interaction specifications at the design stage to embody soft robots with not only proper deformability but equally importantly,considerable stiffness to perform complex tasks in practical applications.Here,inspired by the dexterity of human hands,we propose a computational design framework for soft grippers with a focus on improving their interaction performance in power grasping or precision grasping mode.The design paradigm rests on attaching a relatively stiffer skeleton layer to the parametric pneumatic networks based actuator which is widely used due to the geometric advantage,and the skeleton layout is designed for customized interaction conditions by a level set based topology optimization approach.As expected,the optimized skeleton layouts exhibit specified structural features highly relevant to the predefined concentrated loads for precision grip or distributed loads for power grip,which physically implies the compromise between deformability and stiffness.Since the interaction forces are difficult to measure in situ,we devise power and precision grasping scenarios and evaluate the critical actuation pressure of the object’s falling instead.The experiments qualitatively demonstrate the superiority of each specified design.This work represents an initial step toward the rational design for interaction in soft robots. 展开更多
关键词 soft robotics interaction GRIPPERS topology optimization
原文传递
Tailoring the in-plane and out-of-plane stiffness of soft fingers by endoskeleton topology optimization for stable grasping 被引量:2
7
作者 li dechen CHEN ShiTong +3 位作者 SONG ZeNan liANG JiaLong ZHU XiangYang CHEN FeiFei 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第11期3080-3089,共10页
The intrinsic compliance of soft materials endows soft robots with great advantages to achieve large deformation and adaptive interactions in grasping tasks.However,current soft grippers usually focus on the in-plane ... The intrinsic compliance of soft materials endows soft robots with great advantages to achieve large deformation and adaptive interactions in grasping tasks.However,current soft grippers usually focus on the in-plane large deformation and load capacity but ignore the effect of out-of-plane external loads,which may lead to instability in practical scenarios.This problem calls for stiffness design along multiple directions to withstand not only in-plane interacting forces with objects,but also unexpected outof-plane loads.In this paper,we design a new type of soft finger by embedding an endoskeleton inside the widely-used PneuNets actuator,and the endoskeleton layout is optimized to achieve a remarkable bending deflection and limited lateral deflection under combined external in-plane and out-of-plane loads.Based on the multi-objective topology optimization approach,the key structural features of the optimized endoskeleton are extracted and parameterized.The multi-material soft fingers are fabricated by the silicone compound mold method.Static and dynamic experiment results validate that the soft gripper with endoskeleton embedded exhibits remarkably improved out-of-plane stiffness,without sacrificing the in-plane bending flexibility,and leads to more stable grasping. 展开更多
关键词 soft robot soft gripper stable grasping topology optimization pneumatic actuator
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部