In the supervised classification process of remotely sensed imagery, the quantity of samples is one of the important factors affecting the accuracy of the image classification as well as the keys used to evaluate the ...In the supervised classification process of remotely sensed imagery, the quantity of samples is one of the important factors affecting the accuracy of the image classification as well as the keys used to evaluate the image classification. In general, the samples are acquired on the basis of prior knowledge, experience and higher resolution images. With the same size of samples and the same sampling model, several sets of training sample data can be obtained. In such sets, which set reflects perfect spectral characteristics and ensure the accuracy of the classification can be known only after the accuracy of the classification has been assessed. So, before classification, it would be a meaningful research to measure and assess the quality of samples for guiding and optimizing the consequent classification process. Then, based on the rough set, a new measuring index for the sample quality is proposed. The experiment data is the Landsat TM imagery of the Chinese Yellow River Delta on August 8th, 1999. The experiment compares the Bhattacharrya distance matrices and purity index zl and △x based on rough set theory of 5 sample data and also analyzes its effect on sample quality.展开更多
为了探索区间二型模糊背景下的多属性群决策方法,以多粒度概率粗糙集为基础,结合MULTIMOORA(Multi-Objective Optimization by Ratio Analysis Plus the Full Multi-Plicative Form)与证据融合理论,发展了一种基于区间二型模糊信息的多...为了探索区间二型模糊背景下的多属性群决策方法,以多粒度概率粗糙集为基础,结合MULTIMOORA(Multi-Objective Optimization by Ratio Analysis Plus the Full Multi-Plicative Form)与证据融合理论,发展了一种基于区间二型模糊信息的多粒度证据融合决策模型.首先,提出多粒度区间二型模糊概率粗糙集模型;然后,通过离差最大化法和熵权法计算决策者权重和属性权重,依据多粒度概率粗糙集和MULTIMOORA法建立区间二型模糊多属性群决策模型,通过源自D-S证据理论的证据融合方法融合得出决策结果.通过钢铁行业耗能的实例,证明提出方法的可行性与有效性,总体上,提出的决策模型具备一定的容错力,有助于获得强解释力的稳健型决策结果.展开更多
多粒度群决策是从决策信息中的多粒度特征出发,利用粒计算模型对群决策问题进行高效建模与分析的过程.现有多数多粒度群决策方法仅可提供单一的决策结果,然而不同方法带来的决策结果往往存在差异.为了深入探索犹豫模糊语言信息系统中的...多粒度群决策是从决策信息中的多粒度特征出发,利用粒计算模型对群决策问题进行高效建模与分析的过程.现有多数多粒度群决策方法仅可提供单一的决策结果,然而不同方法带来的决策结果往往存在差异.为了深入探索犹豫模糊语言信息系统中的稳健型多粒度群决策方法,依据多粒度概率粗糙集、MULTIMOORA(Multi-Objective Optimization by Ratio Analysis Plus the Full Multi-plicative Form)和TPOP(Technique of Precise Order Preference)建立一种面向多粒度群决策的新型犹豫模糊语言多粒度计算方法.首先结合犹豫模糊语言术语集与多粒度概率粗糙集,提出犹豫模糊语言多粒度概率粗糙集模型,然后依据离差最大化法计算属性权重与决策者权重,并结合TPOP建立犹豫模糊语言稳健型多粒度群决策方法.最后,通过医学实例验证提出方法的可行性与有效性.展开更多
基金Supported in part by the National Natural Science Foundation of China (No.40671136), Open Research Fund from State Key Laboratory of Remote Sensing Science (No.LRSS0610) and the National 863 Program of China (No. 2006AA12Z215).
文摘In the supervised classification process of remotely sensed imagery, the quantity of samples is one of the important factors affecting the accuracy of the image classification as well as the keys used to evaluate the image classification. In general, the samples are acquired on the basis of prior knowledge, experience and higher resolution images. With the same size of samples and the same sampling model, several sets of training sample data can be obtained. In such sets, which set reflects perfect spectral characteristics and ensure the accuracy of the classification can be known only after the accuracy of the classification has been assessed. So, before classification, it would be a meaningful research to measure and assess the quality of samples for guiding and optimizing the consequent classification process. Then, based on the rough set, a new measuring index for the sample quality is proposed. The experiment data is the Landsat TM imagery of the Chinese Yellow River Delta on August 8th, 1999. The experiment compares the Bhattacharrya distance matrices and purity index zl and △x based on rough set theory of 5 sample data and also analyzes its effect on sample quality.
文摘为了探索区间二型模糊背景下的多属性群决策方法,以多粒度概率粗糙集为基础,结合MULTIMOORA(Multi-Objective Optimization by Ratio Analysis Plus the Full Multi-Plicative Form)与证据融合理论,发展了一种基于区间二型模糊信息的多粒度证据融合决策模型.首先,提出多粒度区间二型模糊概率粗糙集模型;然后,通过离差最大化法和熵权法计算决策者权重和属性权重,依据多粒度概率粗糙集和MULTIMOORA法建立区间二型模糊多属性群决策模型,通过源自D-S证据理论的证据融合方法融合得出决策结果.通过钢铁行业耗能的实例,证明提出方法的可行性与有效性,总体上,提出的决策模型具备一定的容错力,有助于获得强解释力的稳健型决策结果.
文摘多粒度群决策是从决策信息中的多粒度特征出发,利用粒计算模型对群决策问题进行高效建模与分析的过程.现有多数多粒度群决策方法仅可提供单一的决策结果,然而不同方法带来的决策结果往往存在差异.为了深入探索犹豫模糊语言信息系统中的稳健型多粒度群决策方法,依据多粒度概率粗糙集、MULTIMOORA(Multi-Objective Optimization by Ratio Analysis Plus the Full Multi-plicative Form)和TPOP(Technique of Precise Order Preference)建立一种面向多粒度群决策的新型犹豫模糊语言多粒度计算方法.首先结合犹豫模糊语言术语集与多粒度概率粗糙集,提出犹豫模糊语言多粒度概率粗糙集模型,然后依据离差最大化法计算属性权重与决策者权重,并结合TPOP建立犹豫模糊语言稳健型多粒度群决策方法.最后,通过医学实例验证提出方法的可行性与有效性.