Background: Infertility is characterized by the inability to conceive after a year of regular unprotected intercourse. Aims: This study aimed to investigate the diagnostic value of sex hormone levels during different ...Background: Infertility is characterized by the inability to conceive after a year of regular unprotected intercourse. Aims: This study aimed to investigate the diagnostic value of sex hormone levels during different physiological periods in the diagnosis of infertility patients. Methods: From December 2019 to May 2021, a total of 93 infertility patients were admitted and selected as the observation group. Among them, 31 cases were in the follicular stage, 31 cases in the ovulation stage, and 31 cases in the luteal stage. Ninety-three healthy women for fertility evaluation due to male infertility were selected as the control group. The control group included 31 women in the follicular phase, 31 women in the ovulatory phase, and 31 women in the luteal phase. The levels of sex hormones (prolactin (PRL), luteinizing hormone (LH), follicle-stimulating hormone (FSH), estradiol (E2), testosterone (T), and progesterone (P)) during different physiological phases were compared between the observation and control groups. Results: The follicular phase showed no significant difference in LH levels between the observation group and the control group. The observation group showed higher levels of PRL and P compared to the control group, while the levels of FSH, E2, and T were lower in the observation group compared to the control group. The ovulation phase showed no significant difference in PRL levels between the two groups. The observation group showed lower levels of LH, FSH, E2, T, and P compared to the control group. The luteal phase showed no statistical difference in E2 levels between the two groups. The observation group showed higher levels of PRL, LH, and FSH compared to the control group, while the levels of T and P were lower in the observation group compared to the control group. Conclusion: Infertile women show variations in hormone levels compared to the normal levels during the follicular phase, ovulatory phase, and luteal phase.展开更多
The lithium(Li)metal anode is widely regarded as an ideal anode material for high-energy-density batteries.However,uncontrolled Li dendrite growth often leads to unfavorable interfaces and low Coulombic efficiency(CE)...The lithium(Li)metal anode is widely regarded as an ideal anode material for high-energy-density batteries.However,uncontrolled Li dendrite growth often leads to unfavorable interfaces and low Coulombic efficiency(CE),limiting its broader application.Herein,an ether-based electrolyte(termed FGN-182)is formulated,exhibiting ultra-stable Li metal anodes through the incorporation of LiFSI and LiNO3 as dual salts.The synergistic effect of the dual salts facilitates the formation of a highly robust SEI film with fast Li+transport kinetics.Notably,Li||Cu half cells exhibit an average CE reaching up to 99.56%.In particular,pouch cells equipped with high-loading lithium cobalt oxide(LCO,3 mAh cm^(-2))cathodes,ultrathin Li chips(25μm),and lean electrolytes(5 g Ah-1)demonstrate outstanding cycling performance,retaining 80%capacity after 125 cycles.To address the gas issue in the cathode under high voltage,cathode additives 1,3,6-tricyanohexane is incorporated with FGN-182;the resulting high-voltage LCO||Li(4.4 V)pouch cells can cycle steadily over 93 cycles.This study demonstrates that,even with the use of ether-based electrolytes,it is possible to simultaneously achieve significant improvements in both high Li utilization and electrolyte tolerance to high voltage by exploring appropriate functional additives for both the cathode and anode.展开更多
Ulcerative colitis(UC)is characterized by chronic relapsing intestinal inflammation.Currently,there is no effective treatment for the disease.According to our preliminary data,1,8-cineole,which is the main active comp...Ulcerative colitis(UC)is characterized by chronic relapsing intestinal inflammation.Currently,there is no effective treatment for the disease.According to our preliminary data,1,8-cineole,which is the main active compound of Amomum compactum Sol.ex Maton volatile oil and an effective drug for the treatment of pneumonia,showed remarkable anti-inflammatory effects on colitis pathogenesis.However,its mechanism of action and direct targets remain unclear.This study investigated the direct targets and mechanism through which 1,8-cineole exerts its anti-inflammatory effects using a dextran sulfate sodium salt-induced colitis mouse model.The effects of 1,8-cineole on macrophage polarization were investigated using activated bone marrow-derived macrophages and RAW264.7 cells.In addition,1,8-cineole targets were revealed by drug affinity responsive target stability,thermal shift assay,cellular thermal shift assay,and heat shock protein 90(HSP90)adenosine triphosphatases(ATPase)activity assays.The results showed that 1,8-cineole exhibited powerful anti-inflammatory properties in vitro and in vivo by inhibiting the macrophage M1 polarization and protecting intestinal barrier function.Mechanistically,1,8-cineole directly interacted with HSP90 and decreased its ATPase activity,also inhibited nucleotide-binding and oligomerization domain-,leucine rich repeat-,and pyrin domain-containing 3(NLRP3)binding to HSP90 and suppressor of G-two allele of SKP1(SGT1)and suppressed NLRP3 inflammasome activation in macrophages.These results demonstrated that 1,8-cineole is a potential drug candidate for UC treatment.展开更多
Background:Kai-Xin-San,a classical Chinese medicine prescription,has been widely applied in the clinical therapy for depression,but its pharmacological mechanism remains to be further explored.Based on network pharmac...Background:Kai-Xin-San,a classical Chinese medicine prescription,has been widely applied in the clinical therapy for depression,but its pharmacological mechanism remains to be further explored.Based on network pharmacology,molecular docking and animal experiments,the research is performed to exploit pharmacological mechanism of Kai-Xin-San for treating depression.Methods:Obtain chemical components and potential targets of Kai-Xin-San through Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform,Encyclopedia of Traditional Chinese Medicine and Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine databases,and then screen the active ingredients of each herb in accordance with absorption,distribution,metabolism,and excretion.The GenCards,Online Mendelian Inheritance in Man,Therapeutic Target database and DrugBank databases were used to obtain the major targets of depression,and the STRING platform was used to construct the protein-protein interaction network and explore the potential protein functional modules in the network.The targets were subjected to Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis by STRING database and Metascape database.The interaction network of“Kai-Xin-San active components-depression-targets-pathways”was constructed by Cytoscape,and molecular docking verification was performed by Auto Dock tools.Finally,animal experiments were carried out for further verification.The chronic restraint stress depression model was established and mice were randomly divided into 4 groups:control group,chronic restraint stress group,fluoxetine group and Kai-Xin-San group.Behavioral tests were used to evaluate the depressive phenotype of mice.The expression of CaMKII-,synaptophysin,poststroke depression-95,and CACNA1C were all detected using a western blot.Results:Network analysis shows that Kai-Xin-San may mainly regulate calcium signaling pathway to exert antidepressant effects.A majority of the targets and components have good binding activity,according to the molecular docking studies.In the current study,behavioral tests showed that Kai-Xin-San could effectively alleviate depression-like behaviors in mice compared with the chronic restraint stress group,which effect was comparable to fluoxetine.Meanwhile,compared with the chronic restraint stress group,protein levels of CACNA1C,CaMKII-α,synaptophysin and poststroke depression-95 were significantly increased(P<0.05).Conclusion:The research initially identifies the multi-component,multi-target,and multi-path mechanism of Kai-Xin-San in the treatment of depression.Kai-Xin-San may improve synaptic plasticity through calcium signaling pathway to exert antidepressant effects.展开更多
Nuclear mass is a fundamental property of nuclear physics and a necessary input in nuclear astrophysics.Owing to the complexity of atomic nuclei and nonperturbative strong interactions,conventional physical models can...Nuclear mass is a fundamental property of nuclear physics and a necessary input in nuclear astrophysics.Owing to the complexity of atomic nuclei and nonperturbative strong interactions,conventional physical models cannot completely describe nuclear binding energies.In this study,the mass formula was improved by considering an additional term from the Fermi gas model.All nuclear masses in the Atomic Mass Evaluation Database were reproduced with a root-mean-square deviation(RMSD)of -1.86 MeV(1.92 MeV).The new mass formula exhibits good performance in the neutron-rich nuclear region.The RMSD decreases to 0.393 MeV when the ratio of the neutron number to the proton number is≥1.6.展开更多
As a flexible resource,energy storage plays an increasingly significant role in stabilizing and supporting the power system,while providing auxiliary services.Still,the current high demand for energy storage contrasts...As a flexible resource,energy storage plays an increasingly significant role in stabilizing and supporting the power system,while providing auxiliary services.Still,the current high demand for energy storage contrasts with the fuzzy lack of market-oriented mechanisms for energy storage,the principle of market-oriented operation has not been embodied,and there is no unified and systematic analytical framework for the business model.However,the dispatch management model of energy storage in actual power system operation is not clear.Still,the specific scheduling process and energy storage strategy on the source-load-network side could be more specific,and there needs to be a greater understanding of the collaborative scheduling process of the multilevel scheduling center.On this basis,this paper reviews the energy storage operation model and market-based incentive mechanism,For different functional types and installation locations of energy storage within the power system,the operational models and existing policies for energy storage participation in the market that are adapted to multiple operating states are summarized.From the point of view of the actual scheduling and operation management of energy storage in China,an energy storage regulation and operation management model based on“national,provincial,and local”multilevel coordination is proposed,as well as key technologies in the interactive scenarios of source-load,network and storage.展开更多
Glial cell line-derived neurotrophic factor recombinant adenovirus vector-transfected bone marrow mesenchymal stem cells were induced to differentiate into neuron-like cells using inductive medium containing retinoic ...Glial cell line-derived neurotrophic factor recombinant adenovirus vector-transfected bone marrow mesenchymal stem cells were induced to differentiate into neuron-like cells using inductive medium containing retinoic acid and epidermal growth factor. Cell viability, micro- tubule-associated protein 2-positive cell ratio, and the expression levels of glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein-43 protein in the su- pernatant were significantly higher in glial cell line-derived neurotrophic factor/bone marrow mesenchymal stem cells compared with empty virus plasmid-transfected bone marrow mes- enchymal stem cells. Furthermore, microtubule-associated protein 2, glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein743 mRNA levels in cell pellets were statistically higher in glial cell line-derived neurotrophic factor/bone marrow mesen- chymal stem cells compared with empty virus plasmid-transfected bone marrow mesenchymal stem cells. These results suggest that glial cell line-derived neurotrophic factor/bone marrow mesenchymal stem cells have a higher rate of induction into neuron-like cells, and this enhanced differentiation into neuron-like cells may be associated with up-regulated expression of glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein-43.展开更多
Optical true delay lines(OTDLs)of low propagation losses,small footprints and high tuning speeds and efficiencies are of critical importance for various photonic applications.Here,we report fabrication of electro-opti...Optical true delay lines(OTDLs)of low propagation losses,small footprints and high tuning speeds and efficiencies are of critical importance for various photonic applications.Here,we report fabrication of electro-optically switchable OTDLs on lithium niobate on insulator using photolithography assisted chemo-mechanical etching.Our device consists of several low-loss optical waveguides of different lengths which are consecutively connected by electro-optical switches to generate different amounts of time delay.The fabricated OTLDs show an ultra-low propagation loss of^0.03dB/cm for waveguide lengths well above 100 cm.展开更多
JMCT is a large-scale,high-fidelity,three-dimensional general neutron–photon–electron–proton transport Monte Carlo software system.It was developed based on the combinatorial geometry parallel infrastructure JCOGIN...JMCT is a large-scale,high-fidelity,three-dimensional general neutron–photon–electron–proton transport Monte Carlo software system.It was developed based on the combinatorial geometry parallel infrastructure JCOGIN and the adaptive structured mesh infrastructure JASMIN.JMCT is equipped with CAD modeling and visualizes the image output.It supports the geometry of the body and the structured/unstructured mesh.JMCT has most functions,variance reduction techniques,and tallies of the traditional Monte Carlo particle transport codes.Two energy models,multi-group and continuous,are provided.In recent years,some new functions and algorithms have been developed,such as Doppler broadening on-thefly(OTF),uniform tally density(UTD),consistent adjoint driven importance sampling(CADIS),fast criticality search of boron concentration(FCSBC)domain decomposition(DD),adaptive control rod moving(ACRM),and random geometry(RG)etc.The JMCT is also coupled with the discrete ordinate SNcode JSNT to generate source-biasing factors and weight-window parameters.At present,the number of geometric bodies,materials,tallies,depletion zones,and parallel processors are sufficiently large to simulate extremely complicated device problems.JMCT can be used to simulate reactor physics,criticality safety analysis,radiation shielding,detector response,nuclear well logging,and dosimetry calculations etc.In particular,JMCT can be coupled with depletion and thermal-hydraulics for the simulation of reactor nuclear-hot feedback effects.This paper describes the progress in advanced modeling,high-performance numerical simulation of particle transport,multiphysics coupled calculations,and large-scale parallel computing.展开更多
1-Decene was oligomerized over the supported AlCl3/γ-Al2O3 catalyst in a fixed-bed reactor. The effects of temperature and LHSV on oligomerization of 1-decene were investigated and the synthetic PAO was characterized...1-Decene was oligomerized over the supported AlCl3/γ-Al2O3 catalyst in a fixed-bed reactor. The effects of temperature and LHSV on oligomerization of 1-decene were investigated and the synthetic PAO was characterized with GC technique. Furthermore, the life of immobilized catalyst was tested and the mechanism of catalyst deactivation was discussed. The results showed that with an increasing temperature, the PAO yield increased and the kinematic viscosity of oil decreased. The GC results indicated that the synthesized PAO was a mixture consisting of dimers, trimers, tetramers and pentamers. The results of chloride content measurements and BET tests showed that catalyst deactivation could be mainly attributed to the loss of active components.展开更多
Si-based materials have been extensively studied because of their high theoretical capacity,low working potential,and abundant reserves,but serious initial irreversible capacity loss and poor cyclic performance result...Si-based materials have been extensively studied because of their high theoretical capacity,low working potential,and abundant reserves,but serious initial irreversible capacity loss and poor cyclic performance resulting from large volume change of Si during lithiation and delithiation processes restrict their widespread application.Herein,we report the preparation of multi-shell coated Si(DS-Si)nanocomposites by in-situ electroless deposition method using Si granules as the active materials and copper sulfate as Cu sources.The ratio of Si and Cu was readily tuned by varying the concentration of copper sulfate.The multi-shell(Cu@CuxSi/SiO2)coating on Si surface promotes the formation of robust and dense SEI films and the transportation of electron.Thus,the obtained DS-Si composites exhibit an initial coulombic efficiency of 86.2%,a capacity of 1636 mAh g^-1 after 100 discharge-charge cycles at 840 mA g^-1,and an average charge capacity of 1493 mAh g^-1 at 4200 mA g^-1.This study provides a low-cost and large-scale approach to the preparation of nanostructured Si-metal composites anodes with good electrochemical performance for lithium ion batteries.展开更多
文摘Background: Infertility is characterized by the inability to conceive after a year of regular unprotected intercourse. Aims: This study aimed to investigate the diagnostic value of sex hormone levels during different physiological periods in the diagnosis of infertility patients. Methods: From December 2019 to May 2021, a total of 93 infertility patients were admitted and selected as the observation group. Among them, 31 cases were in the follicular stage, 31 cases in the ovulation stage, and 31 cases in the luteal stage. Ninety-three healthy women for fertility evaluation due to male infertility were selected as the control group. The control group included 31 women in the follicular phase, 31 women in the ovulatory phase, and 31 women in the luteal phase. The levels of sex hormones (prolactin (PRL), luteinizing hormone (LH), follicle-stimulating hormone (FSH), estradiol (E2), testosterone (T), and progesterone (P)) during different physiological phases were compared between the observation and control groups. Results: The follicular phase showed no significant difference in LH levels between the observation group and the control group. The observation group showed higher levels of PRL and P compared to the control group, while the levels of FSH, E2, and T were lower in the observation group compared to the control group. The ovulation phase showed no significant difference in PRL levels between the two groups. The observation group showed lower levels of LH, FSH, E2, T, and P compared to the control group. The luteal phase showed no statistical difference in E2 levels between the two groups. The observation group showed higher levels of PRL, LH, and FSH compared to the control group, while the levels of T and P were lower in the observation group compared to the control group. Conclusion: Infertile women show variations in hormone levels compared to the normal levels during the follicular phase, ovulatory phase, and luteal phase.
基金supported by the National Key Research and Development Program of China(2022YFB2502103)the Xiamen Science and Technology Project(3502Z20231057)+1 种基金the National Natural Science Foundation of China(Nos.22279107 and 22288102)J.You,R.Wei,and L.Niu acknowledge the China Scholarship Council(CSC)for a doctoral scholarship(Grant Nos.202006310030,202108530138,and 202108530139).
文摘The lithium(Li)metal anode is widely regarded as an ideal anode material for high-energy-density batteries.However,uncontrolled Li dendrite growth often leads to unfavorable interfaces and low Coulombic efficiency(CE),limiting its broader application.Herein,an ether-based electrolyte(termed FGN-182)is formulated,exhibiting ultra-stable Li metal anodes through the incorporation of LiFSI and LiNO3 as dual salts.The synergistic effect of the dual salts facilitates the formation of a highly robust SEI film with fast Li+transport kinetics.Notably,Li||Cu half cells exhibit an average CE reaching up to 99.56%.In particular,pouch cells equipped with high-loading lithium cobalt oxide(LCO,3 mAh cm^(-2))cathodes,ultrathin Li chips(25μm),and lean electrolytes(5 g Ah-1)demonstrate outstanding cycling performance,retaining 80%capacity after 125 cycles.To address the gas issue in the cathode under high voltage,cathode additives 1,3,6-tricyanohexane is incorporated with FGN-182;the resulting high-voltage LCO||Li(4.4 V)pouch cells can cycle steadily over 93 cycles.This study demonstrates that,even with the use of ether-based electrolytes,it is possible to simultaneously achieve significant improvements in both high Li utilization and electrolyte tolerance to high voltage by exploring appropriate functional additives for both the cathode and anode.
基金supported by the National Natural Science Foundation of China(Grant Nos.:81830114,82004232,82174253,and 82104707)Guangdong Basic and Applied Basic Research Foundation,China(Grant Nos.:2021A1515011215 and 2022A1515110827)+6 种基金Guangzhou Basic and Applied Basic Research Foundation,China(Grant No.:2023A1515011149)China Postdoctoral Science Foundation(Grant Nos.:2020M683206 and 2021M701443)the Key Area Research and Development Program of Guangdong Province,China(Grant No.:2020B1111100010)Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine,China(Grant No.:202102010014)the Cross-disciplinary Special Project of Jinan University,China(Grant No.:21621115)the State Key Laboratory of Dampness Syndrome of Chinese Medicine,China(Grant No.:SZ2021KF13)the Outstanding Innovative Talents Cultivation Funded Programs for Doctoral Students of Jinan University,China(Grant No.:2021CXB024).
文摘Ulcerative colitis(UC)is characterized by chronic relapsing intestinal inflammation.Currently,there is no effective treatment for the disease.According to our preliminary data,1,8-cineole,which is the main active compound of Amomum compactum Sol.ex Maton volatile oil and an effective drug for the treatment of pneumonia,showed remarkable anti-inflammatory effects on colitis pathogenesis.However,its mechanism of action and direct targets remain unclear.This study investigated the direct targets and mechanism through which 1,8-cineole exerts its anti-inflammatory effects using a dextran sulfate sodium salt-induced colitis mouse model.The effects of 1,8-cineole on macrophage polarization were investigated using activated bone marrow-derived macrophages and RAW264.7 cells.In addition,1,8-cineole targets were revealed by drug affinity responsive target stability,thermal shift assay,cellular thermal shift assay,and heat shock protein 90(HSP90)adenosine triphosphatases(ATPase)activity assays.The results showed that 1,8-cineole exhibited powerful anti-inflammatory properties in vitro and in vivo by inhibiting the macrophage M1 polarization and protecting intestinal barrier function.Mechanistically,1,8-cineole directly interacted with HSP90 and decreased its ATPase activity,also inhibited nucleotide-binding and oligomerization domain-,leucine rich repeat-,and pyrin domain-containing 3(NLRP3)binding to HSP90 and suppressor of G-two allele of SKP1(SGT1)and suppressed NLRP3 inflammasome activation in macrophages.These results demonstrated that 1,8-cineole is a potential drug candidate for UC treatment.
基金This study was supported by the National Natural Science Foundation of China(No.81830114 and 82104707)the Natural Science Foundation of Guangdong of China(No.2023A1515011149)+4 种基金Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine(No.202102010014)the Project of Administration of Traditional Chinese Medicine of Guangdong Province of China(No.20221103)the China Postdoctoral Science Foundation(No.2020M683206)Basic and Applied Basic Research Project of Guangzhou Basic Research Plan(No.202201011264)the Fundamental Research Funds for the Central Universities(No.21621001)。
文摘Background:Kai-Xin-San,a classical Chinese medicine prescription,has been widely applied in the clinical therapy for depression,but its pharmacological mechanism remains to be further explored.Based on network pharmacology,molecular docking and animal experiments,the research is performed to exploit pharmacological mechanism of Kai-Xin-San for treating depression.Methods:Obtain chemical components and potential targets of Kai-Xin-San through Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform,Encyclopedia of Traditional Chinese Medicine and Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine databases,and then screen the active ingredients of each herb in accordance with absorption,distribution,metabolism,and excretion.The GenCards,Online Mendelian Inheritance in Man,Therapeutic Target database and DrugBank databases were used to obtain the major targets of depression,and the STRING platform was used to construct the protein-protein interaction network and explore the potential protein functional modules in the network.The targets were subjected to Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis by STRING database and Metascape database.The interaction network of“Kai-Xin-San active components-depression-targets-pathways”was constructed by Cytoscape,and molecular docking verification was performed by Auto Dock tools.Finally,animal experiments were carried out for further verification.The chronic restraint stress depression model was established and mice were randomly divided into 4 groups:control group,chronic restraint stress group,fluoxetine group and Kai-Xin-San group.Behavioral tests were used to evaluate the depressive phenotype of mice.The expression of CaMKII-,synaptophysin,poststroke depression-95,and CACNA1C were all detected using a western blot.Results:Network analysis shows that Kai-Xin-San may mainly regulate calcium signaling pathway to exert antidepressant effects.A majority of the targets and components have good binding activity,according to the molecular docking studies.In the current study,behavioral tests showed that Kai-Xin-San could effectively alleviate depression-like behaviors in mice compared with the chronic restraint stress group,which effect was comparable to fluoxetine.Meanwhile,compared with the chronic restraint stress group,protein levels of CACNA1C,CaMKII-α,synaptophysin and poststroke depression-95 were significantly increased(P<0.05).Conclusion:The research initially identifies the multi-component,multi-target,and multi-path mechanism of Kai-Xin-San in the treatment of depression.Kai-Xin-San may improve synaptic plasticity through calcium signaling pathway to exert antidepressant effects.
基金supported by the National Natural Science Foundation of China(Nos.12175199 and U2267205)a ZSTU intramural grant(No.22062267-Y).
文摘Nuclear mass is a fundamental property of nuclear physics and a necessary input in nuclear astrophysics.Owing to the complexity of atomic nuclei and nonperturbative strong interactions,conventional physical models cannot completely describe nuclear binding energies.In this study,the mass formula was improved by considering an additional term from the Fermi gas model.All nuclear masses in the Atomic Mass Evaluation Database were reproduced with a root-mean-square deviation(RMSD)of -1.86 MeV(1.92 MeV).The new mass formula exhibits good performance in the neutron-rich nuclear region.The RMSD decreases to 0.393 MeV when the ratio of the neutron number to the proton number is≥1.6.
基金the North China Branch of State Grid Corporation of China,Contract No.SGNC0000BGWT2310175.
文摘As a flexible resource,energy storage plays an increasingly significant role in stabilizing and supporting the power system,while providing auxiliary services.Still,the current high demand for energy storage contrasts with the fuzzy lack of market-oriented mechanisms for energy storage,the principle of market-oriented operation has not been embodied,and there is no unified and systematic analytical framework for the business model.However,the dispatch management model of energy storage in actual power system operation is not clear.Still,the specific scheduling process and energy storage strategy on the source-load-network side could be more specific,and there needs to be a greater understanding of the collaborative scheduling process of the multilevel scheduling center.On this basis,this paper reviews the energy storage operation model and market-based incentive mechanism,For different functional types and installation locations of energy storage within the power system,the operational models and existing policies for energy storage participation in the market that are adapted to multiple operating states are summarized.From the point of view of the actual scheduling and operation management of energy storage in China,an energy storage regulation and operation management model based on“national,provincial,and local”multilevel coordination is proposed,as well as key technologies in the interactive scenarios of source-load,network and storage.
文摘Glial cell line-derived neurotrophic factor recombinant adenovirus vector-transfected bone marrow mesenchymal stem cells were induced to differentiate into neuron-like cells using inductive medium containing retinoic acid and epidermal growth factor. Cell viability, micro- tubule-associated protein 2-positive cell ratio, and the expression levels of glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein-43 protein in the su- pernatant were significantly higher in glial cell line-derived neurotrophic factor/bone marrow mesenchymal stem cells compared with empty virus plasmid-transfected bone marrow mes- enchymal stem cells. Furthermore, microtubule-associated protein 2, glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein743 mRNA levels in cell pellets were statistically higher in glial cell line-derived neurotrophic factor/bone marrow mesen- chymal stem cells compared with empty virus plasmid-transfected bone marrow mesenchymal stem cells. These results suggest that glial cell line-derived neurotrophic factor/bone marrow mesenchymal stem cells have a higher rate of induction into neuron-like cells, and this enhanced differentiation into neuron-like cells may be associated with up-regulated expression of glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein-43.
基金Supported by the National Key R&D Program of China(Grant No.2019YFA0705000)the National Natural Science Foundation of China(Grant Nos.11734009,61590934,and 11874375)+1 种基金the Strategic Priority Research Program of CAS(Grant No.XDB16030300)the Key Project of the Shanghai Science and Technology Committee(Grant No.17JC1400400).
文摘Optical true delay lines(OTDLs)of low propagation losses,small footprints and high tuning speeds and efficiencies are of critical importance for various photonic applications.Here,we report fabrication of electro-optically switchable OTDLs on lithium niobate on insulator using photolithography assisted chemo-mechanical etching.Our device consists of several low-loss optical waveguides of different lengths which are consecutively connected by electro-optical switches to generate different amounts of time delay.The fabricated OTLDs show an ultra-low propagation loss of^0.03dB/cm for waveguide lengths well above 100 cm.
基金supported by the National Natural Science Foundation of China (Nos. 11805017 and 12001050)
文摘JMCT is a large-scale,high-fidelity,three-dimensional general neutron–photon–electron–proton transport Monte Carlo software system.It was developed based on the combinatorial geometry parallel infrastructure JCOGIN and the adaptive structured mesh infrastructure JASMIN.JMCT is equipped with CAD modeling and visualizes the image output.It supports the geometry of the body and the structured/unstructured mesh.JMCT has most functions,variance reduction techniques,and tallies of the traditional Monte Carlo particle transport codes.Two energy models,multi-group and continuous,are provided.In recent years,some new functions and algorithms have been developed,such as Doppler broadening on-thefly(OTF),uniform tally density(UTD),consistent adjoint driven importance sampling(CADIS),fast criticality search of boron concentration(FCSBC)domain decomposition(DD),adaptive control rod moving(ACRM),and random geometry(RG)etc.The JMCT is also coupled with the discrete ordinate SNcode JSNT to generate source-biasing factors and weight-window parameters.At present,the number of geometric bodies,materials,tallies,depletion zones,and parallel processors are sufficiently large to simulate extremely complicated device problems.JMCT can be used to simulate reactor physics,criticality safety analysis,radiation shielding,detector response,nuclear well logging,and dosimetry calculations etc.In particular,JMCT can be coupled with depletion and thermal-hydraulics for the simulation of reactor nuclear-hot feedback effects.This paper describes the progress in advanced modeling,high-performance numerical simulation of particle transport,multiphysics coupled calculations,and large-scale parallel computing.
基金the SINOPEC Corporation for the financial support
文摘1-Decene was oligomerized over the supported AlCl3/γ-Al2O3 catalyst in a fixed-bed reactor. The effects of temperature and LHSV on oligomerization of 1-decene were investigated and the synthetic PAO was characterized with GC technique. Furthermore, the life of immobilized catalyst was tested and the mechanism of catalyst deactivation was discussed. The results showed that with an increasing temperature, the PAO yield increased and the kinematic viscosity of oil decreased. The GC results indicated that the synthesized PAO was a mixture consisting of dimers, trimers, tetramers and pentamers. The results of chloride content measurements and BET tests showed that catalyst deactivation could be mainly attributed to the loss of active components.
基金supported by the China Postdoctoral Science Foundation(2018M632575)the National Natural Science Foundation of China(21875197 and 21621091)the National Key Research and Development of China(2016YFB0100202)。
文摘Si-based materials have been extensively studied because of their high theoretical capacity,low working potential,and abundant reserves,but serious initial irreversible capacity loss and poor cyclic performance resulting from large volume change of Si during lithiation and delithiation processes restrict their widespread application.Herein,we report the preparation of multi-shell coated Si(DS-Si)nanocomposites by in-situ electroless deposition method using Si granules as the active materials and copper sulfate as Cu sources.The ratio of Si and Cu was readily tuned by varying the concentration of copper sulfate.The multi-shell(Cu@CuxSi/SiO2)coating on Si surface promotes the formation of robust and dense SEI films and the transportation of electron.Thus,the obtained DS-Si composites exhibit an initial coulombic efficiency of 86.2%,a capacity of 1636 mAh g^-1 after 100 discharge-charge cycles at 840 mA g^-1,and an average charge capacity of 1493 mAh g^-1 at 4200 mA g^-1.This study provides a low-cost and large-scale approach to the preparation of nanostructured Si-metal composites anodes with good electrochemical performance for lithium ion batteries.