Shale gas has been discovered in the Upper Triassic Yanchang Formation, Ordos Basin, China. Due to the weak tectonic activities in which the shale plays, core observations indicate abundant random non-tectonic micro- ...Shale gas has been discovered in the Upper Triassic Yanchang Formation, Ordos Basin, China. Due to the weak tectonic activities in which the shale plays, core observations indicate abundant random non-tectonic micro- fractures in the producing shales. The non-tectonic micro-fractures are different from tectonic fractures and are characterized by being irregular, curved, discontinuous, and randomly distributed. The role of micro-fractures in hydraulic fracturing for shale gas development is currently poorly understood yet potentially critical. Two-dimensional computational modeling studies have been used in an initial attempt toward understanding how naturally random fractured reservoirs respond during hydraulic fracturing. The aim of the paper is to investigate the effect of random non-tectonic fractures on hydraulic fracturing. The numerical models with random non-tectonic micro-fractures are built by extracting the fractures of rock blocks after repeated heating and cooling, using a digital image process. Simulations were conducted as a function of:(1) the in-situ stress ratio;(2) internal friction angle of random fractures;(3) cohesion of random fractures;(4) operational variables such as injection rate; and(5) variable injection rate technology. A sensitivity study reveals a number of interesting observations resulting from these parameters on the shear stimulation in a natural fracture system. Three types of fracturing networks were observed from the studied simulations, and the results also show that variable injection rate technology is most promising for producing complex fracturing networks. This work strongly links the production technology and geomechanical evaluation. It can aid in the understanding and optimization of hydraulic fracturing simulations in naturally random fractured reservoirs.展开更多
Soil-rock mixture(SRM),as a type of extremely heterogeneous geomaterial,is very common in nature and engineering.The fracture and damage of SRM often induce severe geological disasters.Hence,it is important to analyze...Soil-rock mixture(SRM),as a type of extremely heterogeneous geomaterial,is very common in nature and engineering.The fracture and damage of SRM often induce severe geological disasters.Hence,it is important to analyze the fracture evolution process of this material.In the present research,real-time computed tomography(CT)scanning was conducted on SRM and pure soil samples under uniaxial compressive experiments to investigate the influence of rocks on fracture evolution in SRM.The initiation of cracks,the original values of,and variations in,average density and heterogeneity in the soil matrix,the crack width evolution during loading,and the final failure modes were all studied.Cracks with a width greater than 0.1 mm will not arise until over 90%of ultimate stress is reached.In general,in SRM,areas where the initial average density of the soil matrix is smaller and the initial heterogeneity is greater,are much easier to crack,but the results for pure soil show the opposite effect.According to fracturing conditions shown in CT slices,fracturing and non-fracturing areas in the soil matrix were investigated.The average density of the soil matrix decreases in all areas under loading,except non-fracturing areas in SRM.For the whole sample,the increase in heterogeneity in the soil matrix of SRM is greater than that of pure soil;but for the fracturing areas,this increase in pure soil is greater.Besides,the average and standard deviations of crack width both follow logarithmic distributions with high correlation coefficients.展开更多
The splash sound of target's water entry is an instantaneous signal, consisting of impact component and bubble components. It is difficult to detect and estimate the azimuth of this signal by traditional azimuth esti...The splash sound of target's water entry is an instantaneous signal, consisting of impact component and bubble components. It is difficult to detect and estimate the azimuth of this signal by traditional azimuth estimation methods using a single vector sensor, especially when the SNR is low. Empirical mode decomposition is a nonlinear analysis method that can emphasize signals' instantaneous characteristic. In this paper, the pressure and particle velocities are decomposed into different intrinsic mode functions (IMF), and the MAIA (mode acoustic intensity averager) method can realize the instantaneous signals' detection and azimuth estimation. The lake experiment and sea trial results show that this method can decompose water-entry sound and ambient interference into different IMFs, so as to detect the starting time of water-entry sound signal and estimate its azimuth effectively.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.4122790141330643&41502294)+2 种基金China Postdoctoral Science Foundation Funded Project(Grants No.2015M571118)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grants Nos.XDB10030000XDB10030300&XDB10050400)
文摘Shale gas has been discovered in the Upper Triassic Yanchang Formation, Ordos Basin, China. Due to the weak tectonic activities in which the shale plays, core observations indicate abundant random non-tectonic micro- fractures in the producing shales. The non-tectonic micro-fractures are different from tectonic fractures and are characterized by being irregular, curved, discontinuous, and randomly distributed. The role of micro-fractures in hydraulic fracturing for shale gas development is currently poorly understood yet potentially critical. Two-dimensional computational modeling studies have been used in an initial attempt toward understanding how naturally random fractured reservoirs respond during hydraulic fracturing. The aim of the paper is to investigate the effect of random non-tectonic fractures on hydraulic fracturing. The numerical models with random non-tectonic micro-fractures are built by extracting the fractures of rock blocks after repeated heating and cooling, using a digital image process. Simulations were conducted as a function of:(1) the in-situ stress ratio;(2) internal friction angle of random fractures;(3) cohesion of random fractures;(4) operational variables such as injection rate; and(5) variable injection rate technology. A sensitivity study reveals a number of interesting observations resulting from these parameters on the shear stimulation in a natural fracture system. Three types of fracturing networks were observed from the studied simulations, and the results also show that variable injection rate technology is most promising for producing complex fracturing networks. This work strongly links the production technology and geomechanical evaluation. It can aid in the understanding and optimization of hydraulic fracturing simulations in naturally random fractured reservoirs.
基金the National Natural Science Foundation of China(Grant Nos.42090023,51734009 and 42002279)the Science Foundation of Key Laboratory of Shale Gas and Geoengineering,Institute of Geology and Geophysics,Chinese Academy of Sciences(Grant No.KLSG201708)。
文摘Soil-rock mixture(SRM),as a type of extremely heterogeneous geomaterial,is very common in nature and engineering.The fracture and damage of SRM often induce severe geological disasters.Hence,it is important to analyze the fracture evolution process of this material.In the present research,real-time computed tomography(CT)scanning was conducted on SRM and pure soil samples under uniaxial compressive experiments to investigate the influence of rocks on fracture evolution in SRM.The initiation of cracks,the original values of,and variations in,average density and heterogeneity in the soil matrix,the crack width evolution during loading,and the final failure modes were all studied.Cracks with a width greater than 0.1 mm will not arise until over 90%of ultimate stress is reached.In general,in SRM,areas where the initial average density of the soil matrix is smaller and the initial heterogeneity is greater,are much easier to crack,but the results for pure soil show the opposite effect.According to fracturing conditions shown in CT slices,fracturing and non-fracturing areas in the soil matrix were investigated.The average density of the soil matrix decreases in all areas under loading,except non-fracturing areas in SRM.For the whole sample,the increase in heterogeneity in the soil matrix of SRM is greater than that of pure soil;but for the fracturing areas,this increase in pure soil is greater.Besides,the average and standard deviations of crack width both follow logarithmic distributions with high correlation coefficients.
基金supported by the National Defense Key Laboratory Fund(9140C200101080C2005)the Harbin Engineering University Basic Research Fund(HEUFT07072)
文摘The splash sound of target's water entry is an instantaneous signal, consisting of impact component and bubble components. It is difficult to detect and estimate the azimuth of this signal by traditional azimuth estimation methods using a single vector sensor, especially when the SNR is low. Empirical mode decomposition is a nonlinear analysis method that can emphasize signals' instantaneous characteristic. In this paper, the pressure and particle velocities are decomposed into different intrinsic mode functions (IMF), and the MAIA (mode acoustic intensity averager) method can realize the instantaneous signals' detection and azimuth estimation. The lake experiment and sea trial results show that this method can decompose water-entry sound and ambient interference into different IMFs, so as to detect the starting time of water-entry sound signal and estimate its azimuth effectively.