Excessive or insufficient application of fertilizer has raised broader concerns regarding soil and environmental degradation.One-time application of slow release fertilizer (SF) has been widely used to reduce yield ga...Excessive or insufficient application of fertilizer has raised broader concerns regarding soil and environmental degradation.One-time application of slow release fertilizer (SF) has been widely used to reduce yield gap with potential maize yield and improve nitrogen use efficiency (NUE).A 2-year field experiment (2018–2019) was conducted to evaluate the effects of SF rates from 0 to 405 kg N ha^(–1) (named F0,SF225,SF270,SF315,SF360,and SF405) and 405 kg N ha^(–1) of common fertilizer(CF405) on the grain yield,biomass and N accumulation,enzymatic activities related with carbon–nitrogen metabolism,NUE and economic analysis.Results indicated that the highest grain yields,NUEs and economic returns were achieved at SF360in both varieties.The enzymatic activities related with carbon–nitrogen metabolism,pre-and post-silking accumulation of biomass and N increased with increasing SF rate,and they were the highest at SF360 and SF405.The grain yield at SF360had no significant difference with that at SF405.However,the N partial factor productivity,N agronomic efficiency and N recovery efficiency at SF360 were 9.8,6.6 and 8.9% higher than that at SF405.The results also indicated that the average grain yields,NUE and economic benefit at SF405 were 5.2,12.3 and 18.1% higher than that at CF405.In conclusion,decreasing N rate from 405 kg ha^(–1)(CF) to 360 kg ha^(–1)(SF) could effectively reduce the yield gap between realized and potential maize yields.The N decreased by 11.1%,but the yield,NUE and economic benefit increased by 3.2,22.2 and 17.5%,which created a simple,efficient and business-friendly system for spring maize production in Jiangsu Province,China.展开更多
Optimal planting density and proper fertilization method are important factors to improve maize yield and nutrient utilization. A two-year(2016 and 2017) field experiment was conducted with three plant densities(6.0, ...Optimal planting density and proper fertilization method are important factors to improve maize yield and nutrient utilization. A two-year(2016 and 2017) field experiment was conducted with three plant densities(6.0, 7.5 and 9.0 plants m^-2) and three fertilization modes(no fertilizer, 0 F;one-off application of slow-released fertilizer, SF;twice application of conventional fertilizer, CF). Results indicated that the grain yields and N, P and K use efficiencies under SF with the optimal planting density(7.5 plants m^-2) were the highest among all the treatments in 2016 and 2017. Compared with CF, SF could increase post-silking dry matter accumulation and promote N, P and K uptake at pre-and post-silking stages;this treatment increased grain N, P and K concentrations and resulted in high N, P and K use efficiencies. Nutrient(N, P and K) absorption efficiencies and partial productivity, and nutrient(N and P) recovery efficiency in SF treatment were significantly higher than those in CF treatments under the planting density of 7.5 plants m^-2. Under both SF and CF conditions, the grain yield, total N accumulation and nutrient use efficiencies initially increased, peaked at planting density of 7.5 plants m^-2, and then decreased with increasing plant density. Based on the yield and nutrient use efficiency in two years, plant density of 7.5 plants m^-2 with SF can improve both the grain yield and N, P and K use efficiency of spring maize in Jiangsu Province, China.展开更多
Intercropping is used widely by smallholder farmers in developing countries to increase land productivity and profitability. We conducted a maize/peanut intercropping experiment in the 2015 and 2016 growing seasons in...Intercropping is used widely by smallholder farmers in developing countries to increase land productivity and profitability. We conducted a maize/peanut intercropping experiment in the 2015 and 2016 growing seasons in Shandong, China. Treatments included sole maize (SM), sole peanut (SP), and an intercrop consisting of four rows of maize and six rows of peanut (IM and IP). The results showed that the intercropping system had yield advantages based on the land equivalent ratio (LER) values of 1.15 and 1.16 in the two years, respectively. Averaged over the two years, the yield of maize in the intercropping was increased by 61.05% compared to that in SM, while the pod yield of peanut was decreased by 31.80% compared to SP. Maize was the superior competitor when intercropped with peanut, and its productivity dominated the yield of the intercropping system in our study. The increased yield was due to a higher kernel number per ear (KNE). Intercropping increased the light transmission ratio (LTR) of the ear layer in the maize canopy, the active photosynthetic duration (APD), and the harvest index (HI) compared to SM. In addition, intercropping promoted the ratio of dry matter accumulation after silking and the distribution of 13C-photosynthates to grain compared to SM. In conclusion, maize/peanut intercropping demonstrated the potential to improve the light condition of maize, achieving enhanced photosynthetic characteristics that improved female spike differentiation, reduced barrenness, and increased KNE. Moreover, dry matter accumulation and 13C-photosynthates distribution to grain of intercropped maize were improved, and a higher grain yield was ultimately obtained.展开更多
基金financial support from the National Key Research and Development Program of China(2016YFD0300109)the National Natural Science Foundation of China(31771709)+2 种基金the Jiangsu Agricultural Industry Technology System of China(JATS[2019]458)the High-end Talent Support Program of Yangzhou University,Chinathe Priority Academic Program Development of Jiangsu Higher Education Institutions,China。
文摘Excessive or insufficient application of fertilizer has raised broader concerns regarding soil and environmental degradation.One-time application of slow release fertilizer (SF) has been widely used to reduce yield gap with potential maize yield and improve nitrogen use efficiency (NUE).A 2-year field experiment (2018–2019) was conducted to evaluate the effects of SF rates from 0 to 405 kg N ha^(–1) (named F0,SF225,SF270,SF315,SF360,and SF405) and 405 kg N ha^(–1) of common fertilizer(CF405) on the grain yield,biomass and N accumulation,enzymatic activities related with carbon–nitrogen metabolism,NUE and economic analysis.Results indicated that the highest grain yields,NUEs and economic returns were achieved at SF360in both varieties.The enzymatic activities related with carbon–nitrogen metabolism,pre-and post-silking accumulation of biomass and N increased with increasing SF rate,and they were the highest at SF360 and SF405.The grain yield at SF360had no significant difference with that at SF405.However,the N partial factor productivity,N agronomic efficiency and N recovery efficiency at SF360 were 9.8,6.6 and 8.9% higher than that at SF405.The results also indicated that the average grain yields,NUE and economic benefit at SF405 were 5.2,12.3 and 18.1% higher than that at CF405.In conclusion,decreasing N rate from 405 kg ha^(–1)(CF) to 360 kg ha^(–1)(SF) could effectively reduce the yield gap between realized and potential maize yields.The N decreased by 11.1%,but the yield,NUE and economic benefit increased by 3.2,22.2 and 17.5%,which created a simple,efficient and business-friendly system for spring maize production in Jiangsu Province,China.
基金the financial support of the National Key Research and Development Program of China (2016YFD0300109 and 2018YFD0200703)the National Natural Science Foundation of China (31771709)+2 种基金the Jiangsu Agricultural Industry Technology System of China (JATS[2019]458)the High-end Talent Support Program of Yangzhou University, Chinathe Priority Academic Program Development of Jiangsu Higher Education Institutions, China。
文摘Optimal planting density and proper fertilization method are important factors to improve maize yield and nutrient utilization. A two-year(2016 and 2017) field experiment was conducted with three plant densities(6.0, 7.5 and 9.0 plants m^-2) and three fertilization modes(no fertilizer, 0 F;one-off application of slow-released fertilizer, SF;twice application of conventional fertilizer, CF). Results indicated that the grain yields and N, P and K use efficiencies under SF with the optimal planting density(7.5 plants m^-2) were the highest among all the treatments in 2016 and 2017. Compared with CF, SF could increase post-silking dry matter accumulation and promote N, P and K uptake at pre-and post-silking stages;this treatment increased grain N, P and K concentrations and resulted in high N, P and K use efficiencies. Nutrient(N, P and K) absorption efficiencies and partial productivity, and nutrient(N and P) recovery efficiency in SF treatment were significantly higher than those in CF treatments under the planting density of 7.5 plants m^-2. Under both SF and CF conditions, the grain yield, total N accumulation and nutrient use efficiencies initially increased, peaked at planting density of 7.5 plants m^-2, and then decreased with increasing plant density. Based on the yield and nutrient use efficiency in two years, plant density of 7.5 plants m^-2 with SF can improve both the grain yield and N, P and K use efficiency of spring maize in Jiangsu Province, China.
基金support of the National Key Research and Development Program of China (2017YFD0301001)the National Natural Science Foundation of China (31301274 and 31171497)+1 种基金funds from the Shandong “Double Tops” Program, China (SYL2017XTTD14)the Open Project of State Key Laboratory of Crop Biology in Shandong Agricultural University, China (2018KF10)
文摘Intercropping is used widely by smallholder farmers in developing countries to increase land productivity and profitability. We conducted a maize/peanut intercropping experiment in the 2015 and 2016 growing seasons in Shandong, China. Treatments included sole maize (SM), sole peanut (SP), and an intercrop consisting of four rows of maize and six rows of peanut (IM and IP). The results showed that the intercropping system had yield advantages based on the land equivalent ratio (LER) values of 1.15 and 1.16 in the two years, respectively. Averaged over the two years, the yield of maize in the intercropping was increased by 61.05% compared to that in SM, while the pod yield of peanut was decreased by 31.80% compared to SP. Maize was the superior competitor when intercropped with peanut, and its productivity dominated the yield of the intercropping system in our study. The increased yield was due to a higher kernel number per ear (KNE). Intercropping increased the light transmission ratio (LTR) of the ear layer in the maize canopy, the active photosynthetic duration (APD), and the harvest index (HI) compared to SM. In addition, intercropping promoted the ratio of dry matter accumulation after silking and the distribution of 13C-photosynthates to grain compared to SM. In conclusion, maize/peanut intercropping demonstrated the potential to improve the light condition of maize, achieving enhanced photosynthetic characteristics that improved female spike differentiation, reduced barrenness, and increased KNE. Moreover, dry matter accumulation and 13C-photosynthates distribution to grain of intercropped maize were improved, and a higher grain yield was ultimately obtained.