The allowed Gamow-Teller β-decay information of Li, Be, B, C, and N isotopes under the flame work of nuclear shell model is calculated herein. Theoretical results of Q values, half-lives, excitation energies, log ft ...The allowed Gamow-Teller β-decay information of Li, Be, B, C, and N isotopes under the flame work of nuclear shell model is calculated herein. Theoretical results of Q values, half-lives, excitation energies, log ft values, branching fractions, and β-delayed proton/neutron emission probabilities are tabulated and compared with experimental data. The deviations from the observations are also analyzed. The llBe nucleus is well known for its anomaly ground state Jπ=1/2+. Thus, we compared the theoretical energy levels with the experimental data and the agreements for low excitation states are consistent. The quenching factor is also evaluated and discussed.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 11035001,11375086,11105079 and 10975072)the National Major State Basic Research and Development of China (Grant Nos. 2013CB834400 and 2010CB327803)+2 种基金the Chinese Academy of Sciences Knowledge Innovation Project (Grant No. KJCX2-SW-N02)the Research Fund of Doctoral Point (RFDP) (Grant No. 20100091110028)the Science and Technology Development Fund of Macao (Grant No. 068/2011/A)
文摘The allowed Gamow-Teller β-decay information of Li, Be, B, C, and N isotopes under the flame work of nuclear shell model is calculated herein. Theoretical results of Q values, half-lives, excitation energies, log ft values, branching fractions, and β-delayed proton/neutron emission probabilities are tabulated and compared with experimental data. The deviations from the observations are also analyzed. The llBe nucleus is well known for its anomaly ground state Jπ=1/2+. Thus, we compared the theoretical energy levels with the experimental data and the agreements for low excitation states are consistent. The quenching factor is also evaluated and discussed.