As part of its efforts to promote a sustainable and high-quality development,China has pledged to reduce water consumption and create a water-efficient society.On the basis of identifying the institutional root causes...As part of its efforts to promote a sustainable and high-quality development,China has pledged to reduce water consumption and create a water-efficient society.On the basis of identifying the institutional root causes of excessive capital allocation and excessive water consumption in China’s water-intensive industrial sectors,this study elaborates how the national water-efficient cities assessment contributes to optimized capital allocation.Our research shows that national water-efficient cities assessment has motivated local governments to compete for water efficiency.To conserve water,local governments regulated the entry and exit of water-intensive enterprises,discouraged excessive investments in water-intensive sectors,and phased out obsolete water-intensive capacities within their jurisdictions.This approach has resulted in mutually beneficial outcomes,including improved allocation of capital,enhanced water efficiency,and reduced emissions.This paper offers policy recommendations for establishing a water-efficient society throughout the 14^(th) Five-Year Plan(2021-2025)period by presenting empirical evidence on the policy effects of resource efficiency evaluation.展开更多
A family of unconditionally stable direct integration algorithm with controllable numerical dissipations is proposed. The numerical properties of the new algorithms are controlled by three parameters α, β and γ. By...A family of unconditionally stable direct integration algorithm with controllable numerical dissipations is proposed. The numerical properties of the new algorithms are controlled by three parameters α, β and γ. By the consistent and stability analysis, the proposed algorithms achieve the second-order accuracy and are unconditionally stable under the condition that α≥-0.5, β≤ 0.5 and γ≥-(1+α)/2. Compared with other unconditionally stable algorithms, such as Chang's algorithms and CR algorithm, the proposed algorithms are found to be superior in terms of the controllable numerical damping ratios. The unconditional stability and numerical damping ratios of the proposed algorithms are examined by three numerical examples. The results demonstrate that the proposed algorithms have a superior performance and can be used expediently in solving linear elastic dynamics problems.展开更多
基金Sponsorship of the Outstanding Youth Innovation Team Development Program for Institutes of Higher Learning in Shandong Province(2021RW008)the Youth Program of the Natural Science Foundation of Shandong Province(ZR2021QG048).
文摘As part of its efforts to promote a sustainable and high-quality development,China has pledged to reduce water consumption and create a water-efficient society.On the basis of identifying the institutional root causes of excessive capital allocation and excessive water consumption in China’s water-intensive industrial sectors,this study elaborates how the national water-efficient cities assessment contributes to optimized capital allocation.Our research shows that national water-efficient cities assessment has motivated local governments to compete for water efficiency.To conserve water,local governments regulated the entry and exit of water-intensive enterprises,discouraged excessive investments in water-intensive sectors,and phased out obsolete water-intensive capacities within their jurisdictions.This approach has resulted in mutually beneficial outcomes,including improved allocation of capital,enhanced water efficiency,and reduced emissions.This paper offers policy recommendations for establishing a water-efficient society throughout the 14^(th) Five-Year Plan(2021-2025)period by presenting empirical evidence on the policy effects of resource efficiency evaluation.
基金National Natural Science Foundation of China under Grant No.11372084
文摘A family of unconditionally stable direct integration algorithm with controllable numerical dissipations is proposed. The numerical properties of the new algorithms are controlled by three parameters α, β and γ. By the consistent and stability analysis, the proposed algorithms achieve the second-order accuracy and are unconditionally stable under the condition that α≥-0.5, β≤ 0.5 and γ≥-(1+α)/2. Compared with other unconditionally stable algorithms, such as Chang's algorithms and CR algorithm, the proposed algorithms are found to be superior in terms of the controllable numerical damping ratios. The unconditional stability and numerical damping ratios of the proposed algorithms are examined by three numerical examples. The results demonstrate that the proposed algorithms have a superior performance and can be used expediently in solving linear elastic dynamics problems.