进入21世纪以来,长江干流上游水库群的运行对鄱阳湖与长江之间物质和能量的交换过程产生了重要影响,鄱阳湖流域的秋旱现象逐渐严重,江湖关系加速演变.采用Mann-Kendall趋势检验法、R/S(Rescaled Range Analysis)分析法、变差系数C v和...进入21世纪以来,长江干流上游水库群的运行对鄱阳湖与长江之间物质和能量的交换过程产生了重要影响,鄱阳湖流域的秋旱现象逐渐严重,江湖关系加速演变.采用Mann-Kendall趋势检验法、R/S(Rescaled Range Analysis)分析法、变差系数C v和偏态系数C s等方法,分析了2000年以来鄱阳湖水位变化趋势性特征;分析了长江干流上游水库群调节和湖区采砂活动对鄱阳湖水位趋势性变化的影响.结果显示:2000—2014年鄱阳湖水位分阶段降低,2006—2014年水位降至最低,比2000年前低1.08 m.2000年后,鄱阳湖全年、汛期和枯季平均水位都有减少趋势,10月份平均水位有非常显著的减少趋势;不同季节主湖区与入江水道水位变化趋势性不一致;H值表明鄱阳湖冬季水位减少有较强的持续性.长江干流上游水库群调节对鄱阳湖水位影响存在时空差异,水库群蓄水期加剧了鄱阳湖水位下降的幅度,对湖心区影响达4%以上.采砂活动对鄱阳湖水位的影响在2006—2014年表现明显,除了10月份外其余季节的影响都大于长江干流上游水库群调节作用.合理调度长江干流上游水库群及湖区采砂活动在保护鄱阳湖生态环境中具有重要意义.展开更多
Profles of tidal current and suspended sediment concentration (SSC) were measured in the North Branch of the Changjiang Estuary from neap tide to spring tide in April 2010. The measurement data were analyzed to dete...Profles of tidal current and suspended sediment concentration (SSC) were measured in the North Branch of the Changjiang Estuary from neap tide to spring tide in April 2010. The measurement data were analyzed to determine the characteristics of intratidal and neap-spring variations of SSC and suspended sediment transport. Modulated by tidal range and current speed, the tidal mean SSC increased from 0.5 kg/m3 in neap tide to 3.5 kg/ma in spring tide. The intratidal variation of the depth-mean SSC can be summarized into three types: V-shape variation in neap tide, M-shape and mixed M-V shape variation in medium and spring tides. The occurrence of these variation types is controlled by the relative intensity and interaction of resuspension, settling and impact of water exchange from the rise and fall of tide. In neap tide the V-shape variation is mainly due to the dominant effect of the water exchange from the rise and fall of tide. During medium and spring tides, resuspension and settling processes become dominant. The interactions of these processes, together with the sustained high ebb current and shorter duration of low-tide slack, are respon- sible for the M-shape and M-V shape SSC variation. Weakly consolidated mud and high current speed cause significant resuspension and remarkable flood and ebb SSC peaks. Setting occurs at the slack water periods to cause SSC troughs and formation of a thin flufflayer on the bed. Fluxes of water and suspended sediment averaged over the neap-spring cycle are all seawards, but the magnitude and direction of tidal net sediment flux is highly variable.展开更多
Time series measurements were conducted on suspended sediment and current velocity from neap tide to spring tide in the South Branch of the upper Changjiang Estuary in the summer of 2011. Strong flood-ebb asymmetry in...Time series measurements were conducted on suspended sediment and current velocity from neap tide to spring tide in the South Branch of the upper Changjiang Estuary in the summer of 2011. Strong flood-ebb asymmetry in the current velocity was observed in the South Branch as a result of high river runoff and tide deformation, in which the magnitude and duration of ebb currents were significantly greater than those of flood currents. The suspended sediment concentration(SSC) and suspended median grain size also exhibited remarkable flood-ebb variation; these variables were considerably larger during the ebb than during the flood and increased from neap to spring tide. Affected by the strong asymmetry in the current velocity and SSC between the flood and ebb,suspended sediment flux during the ebb was notably larger than during the flood, and a seaward tidal net flux was observed in each tidal cycle. The balance of sediment flux illustrates that the seaward sediment transport was dominated by river flow and tidal trapping and the landward sediment transport was dominated by the Stokes drift and the shear effect. Notable resuspension occurred during the spring and moderate tides. The critical velocity for the resuspension of bed sediments was estimated based on the correlation between current velocity with SSC and suspended median grain size. The results show that the critical velocity was approximately 40 cm/s during the flood phases and approximately 80 cm/s during the ebb phases because the surficial flood bed sediments located in the lower reach are much finer than the surficial ebb bed sediments located in the upper reach. The flood-ebb variation in the critical erosion velocity has significant effect on the intratidal variation of SSC and sediment transport process, and it is a common phenomenon in many estuaries of the world due to the complicated spatial distribution of bed sediments.展开更多
Recent bathymetric changes in the Changjiang Estuary under the influence of artificial regulation engineerings and basin reservoirs have been analyzed based on the maritime charts since 1997 and recent fieldworks. The...Recent bathymetric changes in the Changjiang Estuary under the influence of artificial regulation engineerings and basin reservoirs have been analyzed based on the maritime charts since 1997 and recent fieldworks. The results indicate a slight erosion of the channels in the upper and middle estuary, continuing deposition and seaward move of the mouth bar crest and intensifying erosion at the nearshore seabed. It is noteworthy that the morphological evolution caused by intensive human activities dominates over the changes from nature process. First, the riverbes are eroded overall in the South Branch (SB), the South Channel (SC) and the upper and middle reaches of the North Channel (NC). The nearshore seabed outside the river mouth is being eroded slightly, which is attributed to the declining sediment supply from the Changjiang Basin due to the construction of the Three Gorges Dam upstream. The sediment above the seabed is very active and coarsened, meanwhile, sand waves are becoming more distinct. Second, a deposition occurs in the North Brach (NB), the mouth of the NC, the mouth bars of the North Passage (NP) and the South Passage (SP) and especially the main channel of the NP, where it shows a massive siltation after the deep waterway project. The reasons for the recent changes are not only the dynamic structure in estuarine mouth bars, but also the supply of sediment resuspension in a local and offshore area. Meanwhile, the severe erosion and siltation in some reaches is related to the construction of estuarine engineerings. It is indicated that the Changjiang Estuary is gradually self-adjusted and adapting to the varying natural factors and intensive human activities. The study on the mechanism of self-regulation of the recent bathymetric changes in the Changjiang Estuary has important and practical significance.展开更多
The offshore waters of the Changjiang Estuary are the transitional areas where river-supplied water and sediment are transported to the sea, and material exchanges occur with the neighbored Hangzhou Bay and the Jiangs...The offshore waters of the Changjiang Estuary are the transitional areas where river-supplied water and sediment are transported to the sea, and material exchanges occur with the neighbored Hangzhou Bay and the Jiangsu waters. Field observations of currents and sediment properties were conducted to study temporal and spatial distributions of suspended sediments under various dynamical conditions. The high sediment concentrations were found to occur in the western and southern waters of the offshore, and the low concentrations occurred in the eastern and northern waters. This pattern of the suspended sediment concentration (SSC) distribution is obviously influ- enced by the runoff and tidal current. The significant difference of along-estuary SSC distribution indicates that the SSC is reduced gradually from the west to the east, and that in the spring tide is obviously higher than in the neap tide. The methods of mechanism analysis and equal-area grids were used to calculate the suspended sediment fluxes at the typical cross sections. It was found that 44 percent of total suspended sediments from the Changjiang River were deposited in the submarine delta, and more than 27 percent of sediments were transported southernly into the Hangzhou Bay, and only 9 percent of sediments was supplied and exchanged with the northern Jiangsu waters, and about 20 percent of sediments was delivered offshore to the sea.展开更多
Observation data of along-estuary and lateral current velocities over a transect located at the South Channel of the Yangtze estuary was obtained during a spring tide in August 2011.Harmonic analysis was done on the c...Observation data of along-estuary and lateral current velocities over a transect located at the South Channel of the Yangtze estuary was obtained during a spring tide in August 2011.Harmonic analysis was done on the current velocities to get a mean component and a semi-diurnal component.Based on these two components,the driving mechanisms of mean lateral flow and M2 lateral tidal flow are shown and analyzed respectively.The dominant driving force of mean lateral flow is nonlinear advection and that of lateral M2 tidal flow is Coriolis force.The friction plays an important role near the bottom and surface for both lateral mean flow and M2 tidal flow.展开更多
Interconnected river system networks is a national water conservancy strategy in China and focus of research. Here we discuss the classification system, material and energy exchange between rivers and lakes, various d...Interconnected river system networks is a national water conservancy strategy in China and focus of research. Here we discuss the classification system, material and energy exchange between rivers and lakes, various dynamic flows and ecological functions of river-lake interconnected relationships. We then propose a novel method for the health assessment of river systems based on interconnected water system networks. In a healthy river system there is "material and energy exchange" and it is the first and foremost relationship of material and energy exchange between rivers and lakes. There are unobstructed various "flows" between rivers and lakes including material flows (water, dissolved substances, sediments, organisms and contaminants), energy flows (water levels, flow and flow velocity), information flows (information generated with water flows, organisms and human activities) and value flows (shipping, power generation, drinking and irrigation). Under the influences of na- ture and human activity, various flows are connected by river-lake interconnection to carry material and energy exchange between rivers and lakes to achieve river-lake interactions. The material and energy exchange between rivers and lakes become one of the approaches and the direct driving forces of changes in river-lake interconnected relationships. The benignant changes in river-lake interconnected relationship tend to be in relatively steady state and in ideal dynamic balance.展开更多
Sediment samples with high spatial resolution (432 samples in total) and flow data were collected on the tidal flats in the mouth-bar region of the Yangtze Estuary. The data was collected in July 2005, July 2006 and...Sediment samples with high spatial resolution (432 samples in total) and flow data were collected on the tidal flats in the mouth-bar region of the Yangtze Estuary. The data was collected in July 2005, July 2006 and May 2007. The samples were analyzed with a particle sizer, resulting in the sediment distribution. The grain sizes and related parameters were analyzed. The results were presented in a ternary diagram. The sediment mainly consisted of sand, silty sand, sandy silt, sand-silt-clay, silt and clayey silt. And sand skeletons and clay matrices were found. At Nanhui Shoal, silt skeletons could be identified as well. Furthermore, the results were discussed per shoal. Although some depth dependencies were found per shoal, no general relation was found. The results are as follows: sediment located at these tidal flats of the Yangtze Estuary was mainly composed of sand, silty sand and silt. The median grain size in sediment was relatively complex with a range from 2.5 φ to 8 φ. The distributions of sorting coefficients ranging from 1 to 2 were in agreement with median sizes. It was suggested that sediment of the tidal flats was coarser and better sorted or finer and worse sorted. The skewness in sediment distribution varied from 0.1 to 0.8. In addition, the distributions of sorting coefficient and skewness in sediment at Chongming Eastern Shoal, Hengsha Eastern Shoal and Jiuduan Shoal were of similar characteristics because there were closely positive correlated relationships among these parameters. However, due to the location difference between Nanhui Southern Shoal and Eastern Shoal, the values of sorting coefficient and skewness had relatively large distinctions. The tracks of sediment transport could be described based on the distributions of sediment, which might reveal sediment transport controlled by two dominant hydrodynamic factors of current and wave. It was appreciable that coarser sediment with lower sorted coefficient was affected by dominant ebb current action and intense wave action resulted from rapidly dissipated wave energy. Moreover, due to the effects of obstructed branches, guided current and broken wave actions of the Deep Water Channel Project, grain-size in sediment located at two sides of the groyne was of uneven distribution characteristics.展开更多
基金The National Science Foundation of China under contract Nos 50939003 and 41176069the Foundation of State Key Laboratory of Estuarine and Coastal Research,East China Normal University of China under contract No.SKLEC-2012KYYW06
文摘Profles of tidal current and suspended sediment concentration (SSC) were measured in the North Branch of the Changjiang Estuary from neap tide to spring tide in April 2010. The measurement data were analyzed to determine the characteristics of intratidal and neap-spring variations of SSC and suspended sediment transport. Modulated by tidal range and current speed, the tidal mean SSC increased from 0.5 kg/m3 in neap tide to 3.5 kg/ma in spring tide. The intratidal variation of the depth-mean SSC can be summarized into three types: V-shape variation in neap tide, M-shape and mixed M-V shape variation in medium and spring tides. The occurrence of these variation types is controlled by the relative intensity and interaction of resuspension, settling and impact of water exchange from the rise and fall of tide. In neap tide the V-shape variation is mainly due to the dominant effect of the water exchange from the rise and fall of tide. During medium and spring tides, resuspension and settling processes become dominant. The interactions of these processes, together with the sustained high ebb current and shorter duration of low-tide slack, are respon- sible for the M-shape and M-V shape SSC variation. Weakly consolidated mud and high current speed cause significant resuspension and remarkable flood and ebb SSC peaks. Setting occurs at the slack water periods to cause SSC troughs and formation of a thin flufflayer on the bed. Fluxes of water and suspended sediment averaged over the neap-spring cycle are all seawards, but the magnitude and direction of tidal net sediment flux is highly variable.
基金The National Natural Science Foundation of China under contract Nos 41176069 and 48505350the Major State Basic Research Development Program of China under contract No.2013CB956502
文摘Time series measurements were conducted on suspended sediment and current velocity from neap tide to spring tide in the South Branch of the upper Changjiang Estuary in the summer of 2011. Strong flood-ebb asymmetry in the current velocity was observed in the South Branch as a result of high river runoff and tide deformation, in which the magnitude and duration of ebb currents were significantly greater than those of flood currents. The suspended sediment concentration(SSC) and suspended median grain size also exhibited remarkable flood-ebb variation; these variables were considerably larger during the ebb than during the flood and increased from neap to spring tide. Affected by the strong asymmetry in the current velocity and SSC between the flood and ebb,suspended sediment flux during the ebb was notably larger than during the flood, and a seaward tidal net flux was observed in each tidal cycle. The balance of sediment flux illustrates that the seaward sediment transport was dominated by river flow and tidal trapping and the landward sediment transport was dominated by the Stokes drift and the shear effect. Notable resuspension occurred during the spring and moderate tides. The critical velocity for the resuspension of bed sediments was estimated based on the correlation between current velocity with SSC and suspended median grain size. The results show that the critical velocity was approximately 40 cm/s during the flood phases and approximately 80 cm/s during the ebb phases because the surficial flood bed sediments located in the lower reach are much finer than the surficial ebb bed sediments located in the upper reach. The flood-ebb variation in the critical erosion velocity has significant effect on the intratidal variation of SSC and sediment transport process, and it is a common phenomenon in many estuaries of the world due to the complicated spatial distribution of bed sediments.
基金The National Natural Science Foundation of China under contract Nos 51479074 and 41340044the Special Key Program of the Ministry of Science and Technology of China under contract No.2013FY112000
文摘Recent bathymetric changes in the Changjiang Estuary under the influence of artificial regulation engineerings and basin reservoirs have been analyzed based on the maritime charts since 1997 and recent fieldworks. The results indicate a slight erosion of the channels in the upper and middle estuary, continuing deposition and seaward move of the mouth bar crest and intensifying erosion at the nearshore seabed. It is noteworthy that the morphological evolution caused by intensive human activities dominates over the changes from nature process. First, the riverbes are eroded overall in the South Branch (SB), the South Channel (SC) and the upper and middle reaches of the North Channel (NC). The nearshore seabed outside the river mouth is being eroded slightly, which is attributed to the declining sediment supply from the Changjiang Basin due to the construction of the Three Gorges Dam upstream. The sediment above the seabed is very active and coarsened, meanwhile, sand waves are becoming more distinct. Second, a deposition occurs in the North Brach (NB), the mouth of the NC, the mouth bars of the North Passage (NP) and the South Passage (SP) and especially the main channel of the NP, where it shows a massive siltation after the deep waterway project. The reasons for the recent changes are not only the dynamic structure in estuarine mouth bars, but also the supply of sediment resuspension in a local and offshore area. Meanwhile, the severe erosion and siltation in some reaches is related to the construction of estuarine engineerings. It is indicated that the Changjiang Estuary is gradually self-adjusted and adapting to the varying natural factors and intensive human activities. The study on the mechanism of self-regulation of the recent bathymetric changes in the Changjiang Estuary has important and practical significance.
基金The Science and Technology Commission of Shanghai Municipality Point Project under contract No 07DJ14003
文摘The offshore waters of the Changjiang Estuary are the transitional areas where river-supplied water and sediment are transported to the sea, and material exchanges occur with the neighbored Hangzhou Bay and the Jiangsu waters. Field observations of currents and sediment properties were conducted to study temporal and spatial distributions of suspended sediments under various dynamical conditions. The high sediment concentrations were found to occur in the western and southern waters of the offshore, and the low concentrations occurred in the eastern and northern waters. This pattern of the suspended sediment concentration (SSC) distribution is obviously influ- enced by the runoff and tidal current. The significant difference of along-estuary SSC distribution indicates that the SSC is reduced gradually from the west to the east, and that in the spring tide is obviously higher than in the neap tide. The methods of mechanism analysis and equal-area grids were used to calculate the suspended sediment fluxes at the typical cross sections. It was found that 44 percent of total suspended sediments from the Changjiang River were deposited in the submarine delta, and more than 27 percent of sediments were transported southernly into the Hangzhou Bay, and only 9 percent of sediments was supplied and exchanged with the northern Jiangsu waters, and about 20 percent of sediments was delivered offshore to the sea.
基金supported by the National Natural Science Foundation of China(Grant Nos.41340044,50939003)Joint Research Projects of Netherlands Organization for Scientific Research and the National Natural Science Foundation of China(Grant No.51061130544)
文摘Observation data of along-estuary and lateral current velocities over a transect located at the South Channel of the Yangtze estuary was obtained during a spring tide in August 2011.Harmonic analysis was done on the current velocities to get a mean component and a semi-diurnal component.Based on these two components,the driving mechanisms of mean lateral flow and M2 lateral tidal flow are shown and analyzed respectively.The dominant driving force of mean lateral flow is nonlinear advection and that of lateral M2 tidal flow is Coriolis force.The friction plays an important role near the bottom and surface for both lateral mean flow and M2 tidal flow.
基金National Natural Science Foundation of China(41361003)Science and Technology Project in Jiangxi Province Department of Education(GJJ14733)
文摘Interconnected river system networks is a national water conservancy strategy in China and focus of research. Here we discuss the classification system, material and energy exchange between rivers and lakes, various dynamic flows and ecological functions of river-lake interconnected relationships. We then propose a novel method for the health assessment of river systems based on interconnected water system networks. In a healthy river system there is "material and energy exchange" and it is the first and foremost relationship of material and energy exchange between rivers and lakes. There are unobstructed various "flows" between rivers and lakes including material flows (water, dissolved substances, sediments, organisms and contaminants), energy flows (water levels, flow and flow velocity), information flows (information generated with water flows, organisms and human activities) and value flows (shipping, power generation, drinking and irrigation). Under the influences of na- ture and human activity, various flows are connected by river-lake interconnection to carry material and energy exchange between rivers and lakes to achieve river-lake interactions. The material and energy exchange between rivers and lakes become one of the approaches and the direct driving forces of changes in river-lake interconnected relationships. The benignant changes in river-lake interconnected relationship tend to be in relatively steady state and in ideal dynamic balance.
基金Key Project for the National Natural Science Foundation of China No.50939003 National Natural Science Foundation of China No.40976055 No.41076050
文摘Sediment samples with high spatial resolution (432 samples in total) and flow data were collected on the tidal flats in the mouth-bar region of the Yangtze Estuary. The data was collected in July 2005, July 2006 and May 2007. The samples were analyzed with a particle sizer, resulting in the sediment distribution. The grain sizes and related parameters were analyzed. The results were presented in a ternary diagram. The sediment mainly consisted of sand, silty sand, sandy silt, sand-silt-clay, silt and clayey silt. And sand skeletons and clay matrices were found. At Nanhui Shoal, silt skeletons could be identified as well. Furthermore, the results were discussed per shoal. Although some depth dependencies were found per shoal, no general relation was found. The results are as follows: sediment located at these tidal flats of the Yangtze Estuary was mainly composed of sand, silty sand and silt. The median grain size in sediment was relatively complex with a range from 2.5 φ to 8 φ. The distributions of sorting coefficients ranging from 1 to 2 were in agreement with median sizes. It was suggested that sediment of the tidal flats was coarser and better sorted or finer and worse sorted. The skewness in sediment distribution varied from 0.1 to 0.8. In addition, the distributions of sorting coefficient and skewness in sediment at Chongming Eastern Shoal, Hengsha Eastern Shoal and Jiuduan Shoal were of similar characteristics because there were closely positive correlated relationships among these parameters. However, due to the location difference between Nanhui Southern Shoal and Eastern Shoal, the values of sorting coefficient and skewness had relatively large distinctions. The tracks of sediment transport could be described based on the distributions of sediment, which might reveal sediment transport controlled by two dominant hydrodynamic factors of current and wave. It was appreciable that coarser sediment with lower sorted coefficient was affected by dominant ebb current action and intense wave action resulted from rapidly dissipated wave energy. Moreover, due to the effects of obstructed branches, guided current and broken wave actions of the Deep Water Channel Project, grain-size in sediment located at two sides of the groyne was of uneven distribution characteristics.