Landslide deformation is affected by its geological conditions and many environmental factors.So it has the characteristics of dynamic,nonlinear and unstable,which makes the prediction of landslide displacement diffic...Landslide deformation is affected by its geological conditions and many environmental factors.So it has the characteristics of dynamic,nonlinear and unstable,which makes the prediction of landslide displacement difficult.In view of the above problems,this paper proposes a dynamic prediction model of landslide displacement based on the improvement of complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN),approximate entropy(ApEn)and convolution long short-term memory(CNN-LSTM)neural network.Firstly,ICEEMDAN and Ap En are used to decompose the cumulative displacements into trend,periodic and random displacements.Then,the least square quintic polynomial function is used to fit the displacement of trend term,and the CNN-LSTM is used to predict the displacement of periodic term and random term.Finally,the displacement prediction results of trend term,periodic term and random term are superimposed to obtain the cumulative displacement prediction value.The proposed model has been verified in Bazimen landslide in the Three Gorges Reservoir area of China.The experimental results show that the model proposed in this paper can more effectively predict the displacement changes of landslides.As compared with long short-term memory(LSTM)neural network,gated recurrent unit(GRU)network model and back propagation(BP)neural network,CNN-LSTM neural network had higher prediction accuracy in predicting the periodic displacement,with the mean absolute percentage error(MAPE)reduced by 3.621%,6.893% and 15.886% respectively,and the root mean square error(RMSE)reduced by 3.834 mm,3.945 mm and 7.422mm respectively.Conclusively,this model not only has high prediction accuracy but also is more stable,which can provide a new insight for practical landslide prevention and control engineering.展开更多
Landslide probability prediction plays an important role in understanding landslide information in advance and taking preventive measures.Many factors can influence the occurrence of landslides,which is easy to have a...Landslide probability prediction plays an important role in understanding landslide information in advance and taking preventive measures.Many factors can influence the occurrence of landslides,which is easy to have a curse of dimensionality and thus lead to reduce prediction accuracy.Then the generalization ability of the model will also decline sharply when there are only small samples.To reduce the dimension of calculation and balance the model’s generalization and learning ability,this study proposed a landslide prediction method based on improved principal component analysis(PCA)and mixed kernel function least squares support vector regression(LSSVR)model.First,the traditional PCA was introduced with the idea of linear discrimination,and the dimensions of initial influencing factors were reduced from 8 to 3.The improved PCA can not only weight variables but also extract the original feature.Furthermore,combined with global and local kernel function,the mixed kernel function LSSVR model was framed to improve the generalization ability.Whale optimization algorithm(WOA)was used to optimize the parameters.Moreover,Root Mean Square Error(RMSE),the sum of squared errors(SSE),Mean Absolute Error(MAE),Mean Absolute Precentage Error(MAPE),and reliability were employed to verify the performance of the model.Compared with radial basis function(RBF)LSSVR model,Elman neural network model,and fuzzy decision model,the proposed method has a smaller deviation.Finally,the landslide warning level obtained from the landslide probability can also provide references for relevant decision-making departments in emergency response.展开更多
An accurate landslide displacement prediction is an important part of landslide warning system. Aiming at the dynamic characteristics of landslide evolution and the shortcomings of traditional static prediction models...An accurate landslide displacement prediction is an important part of landslide warning system. Aiming at the dynamic characteristics of landslide evolution and the shortcomings of traditional static prediction models, this paper proposes a dynamic prediction model of landslide displacement based on singular spectrum analysis(SSA) and stack long short-term memory(SLSTM) network. The SSA is used to decompose the landslide accumulated displacement time series data into trend term and periodic term displacement subsequences. A cubic polynomial function is used to predict the trend term displacement subsequence, and the SLSTM neural network is used to predict the periodic term displacement subsequence. At the same time, the Bayesian optimization algorithm is used to determine that the SLSTM network input sequence length is 12 and the number of hidden layer nodes is 18. The SLSTM network is updated by adding predicted values to the training set to achieve dynamic displacement prediction. Finally, the accumulated landslide displacement is obtained by superimposing the predicted value of each displacement subsequence. The proposed model was verified on the Xintan landslide in Hubei Province, China. The results show that when predicting the displacement of the periodic term, the SLSTM network has higher prediction accuracy than the support vector machine(SVM) and auto regressive integrated moving average(ARIMA). The mean relative error(MRE) is reduced by 4.099% and 3.548% respectively, while the root mean square error(RMSE) is reduced by 5.830 mm and 3.854 mm respectively. It is concluded that the SLSTM network model can better simulate the dynamic characteristics of landslides.展开更多
Celeste Ng’s debut novel Everything I Never Told You enjoys a high readership both in America and abroad.Since its publication in 2014,most of the studies focus on Lydia’s identity crises and the reasons for Lydia’...Celeste Ng’s debut novel Everything I Never Told You enjoys a high readership both in America and abroad.Since its publication in 2014,most of the studies focus on Lydia’s identity crises and the reasons for Lydia’s death.However,most studies neglect the fundamental reason of James’identity crisis-the loss of his inner self-identity.James’cognitive denial of his biological identity and his affective alienating from his practical identity cause his contradictory complex toward himself and his children.Thus it becomes one of the main roots of Lydia’s death and the whole family’s unhappiness.The paper points out that transcending the host country is the best way for an ethnic people living in America.展开更多
针对传统滑坡位移预测模型存在对历史数据遗忘的问题,提出了一种基于长短时记忆(long short time memory,LSTM)网络的滑坡位移动态预测模型。首先,将滑坡累计位移分解为趋势项位移与波动项位移,利用多项式拟合预测趋势项位移;然后,通过...针对传统滑坡位移预测模型存在对历史数据遗忘的问题,提出了一种基于长短时记忆(long short time memory,LSTM)网络的滑坡位移动态预测模型。首先,将滑坡累计位移分解为趋势项位移与波动项位移,利用多项式拟合预测趋势项位移;然后,通过灰色关联度筛选外界诱发因子并运用LSTM模型预测波动项位移;最后,叠加周期项位移与波动项位移,得到累计位移。以新滩滑坡为例,并与(recurrent neural network,RNN)模型以及传统静态神经网络模型BP、ELM进行对比分析,采用平均百分比误差(MAPE),均方根误差(RMSE),拟合优度(R 2)分别对其进行评价。应用结果表明:相比于传统静态模型,LSTM与RNN均适用于滑坡位移动态预测;对比结果显示,LSTM模型具有较好的预测精度,MAPE与RMSE分别为1.026%、0.327 mm,拟合优度R 2为0.978。展开更多
基金funded by the technology innovation guidance special project of Shaanxi Province(Grant No.2020CGXNX009)the supported by the National Natural Science Foundation of China(Grant No.62203344)+1 种基金the Shaanxi Provincial Department of Education serves local special projects(Grant No.22JC036)the Natural Science Basic Research Plan of Shaanxi Province(Grant No.2022JM-322)。
文摘Landslide deformation is affected by its geological conditions and many environmental factors.So it has the characteristics of dynamic,nonlinear and unstable,which makes the prediction of landslide displacement difficult.In view of the above problems,this paper proposes a dynamic prediction model of landslide displacement based on the improvement of complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN),approximate entropy(ApEn)and convolution long short-term memory(CNN-LSTM)neural network.Firstly,ICEEMDAN and Ap En are used to decompose the cumulative displacements into trend,periodic and random displacements.Then,the least square quintic polynomial function is used to fit the displacement of trend term,and the CNN-LSTM is used to predict the displacement of periodic term and random term.Finally,the displacement prediction results of trend term,periodic term and random term are superimposed to obtain the cumulative displacement prediction value.The proposed model has been verified in Bazimen landslide in the Three Gorges Reservoir area of China.The experimental results show that the model proposed in this paper can more effectively predict the displacement changes of landslides.As compared with long short-term memory(LSTM)neural network,gated recurrent unit(GRU)network model and back propagation(BP)neural network,CNN-LSTM neural network had higher prediction accuracy in predicting the periodic displacement,with the mean absolute percentage error(MAPE)reduced by 3.621%,6.893% and 15.886% respectively,and the root mean square error(RMSE)reduced by 3.834 mm,3.945 mm and 7.422mm respectively.Conclusively,this model not only has high prediction accuracy but also is more stable,which can provide a new insight for practical landslide prevention and control engineering.
基金supported by the Natural Science Foundation of Shaanxi Province(Grant No.2019JQ206)in part by the Science and Technology Department of Shaanxi Province(Grant No.2020CGXNG-009)in part by the Education Department of Shaanxi Province under Grant 17JK0346.
文摘Landslide probability prediction plays an important role in understanding landslide information in advance and taking preventive measures.Many factors can influence the occurrence of landslides,which is easy to have a curse of dimensionality and thus lead to reduce prediction accuracy.Then the generalization ability of the model will also decline sharply when there are only small samples.To reduce the dimension of calculation and balance the model’s generalization and learning ability,this study proposed a landslide prediction method based on improved principal component analysis(PCA)and mixed kernel function least squares support vector regression(LSSVR)model.First,the traditional PCA was introduced with the idea of linear discrimination,and the dimensions of initial influencing factors were reduced from 8 to 3.The improved PCA can not only weight variables but also extract the original feature.Furthermore,combined with global and local kernel function,the mixed kernel function LSSVR model was framed to improve the generalization ability.Whale optimization algorithm(WOA)was used to optimize the parameters.Moreover,Root Mean Square Error(RMSE),the sum of squared errors(SSE),Mean Absolute Error(MAE),Mean Absolute Precentage Error(MAPE),and reliability were employed to verify the performance of the model.Compared with radial basis function(RBF)LSSVR model,Elman neural network model,and fuzzy decision model,the proposed method has a smaller deviation.Finally,the landslide warning level obtained from the landslide probability can also provide references for relevant decision-making departments in emergency response.
基金supported by the Natural Science Foundation of Shaanxi Province under Grant 2019JQ206in part by the Science and Technology Department of Shaanxi Province under Grant 2020CGXNG-009in part by the Education Department of Shaanxi Province under Grant 17JK0346。
文摘An accurate landslide displacement prediction is an important part of landslide warning system. Aiming at the dynamic characteristics of landslide evolution and the shortcomings of traditional static prediction models, this paper proposes a dynamic prediction model of landslide displacement based on singular spectrum analysis(SSA) and stack long short-term memory(SLSTM) network. The SSA is used to decompose the landslide accumulated displacement time series data into trend term and periodic term displacement subsequences. A cubic polynomial function is used to predict the trend term displacement subsequence, and the SLSTM neural network is used to predict the periodic term displacement subsequence. At the same time, the Bayesian optimization algorithm is used to determine that the SLSTM network input sequence length is 12 and the number of hidden layer nodes is 18. The SLSTM network is updated by adding predicted values to the training set to achieve dynamic displacement prediction. Finally, the accumulated landslide displacement is obtained by superimposing the predicted value of each displacement subsequence. The proposed model was verified on the Xintan landslide in Hubei Province, China. The results show that when predicting the displacement of the periodic term, the SLSTM network has higher prediction accuracy than the support vector machine(SVM) and auto regressive integrated moving average(ARIMA). The mean relative error(MRE) is reduced by 4.099% and 3.548% respectively, while the root mean square error(RMSE) is reduced by 5.830 mm and 3.854 mm respectively. It is concluded that the SLSTM network model can better simulate the dynamic characteristics of landslides.
文摘Celeste Ng’s debut novel Everything I Never Told You enjoys a high readership both in America and abroad.Since its publication in 2014,most of the studies focus on Lydia’s identity crises and the reasons for Lydia’s death.However,most studies neglect the fundamental reason of James’identity crisis-the loss of his inner self-identity.James’cognitive denial of his biological identity and his affective alienating from his practical identity cause his contradictory complex toward himself and his children.Thus it becomes one of the main roots of Lydia’s death and the whole family’s unhappiness.The paper points out that transcending the host country is the best way for an ethnic people living in America.
文摘针对传统滑坡位移预测模型存在对历史数据遗忘的问题,提出了一种基于长短时记忆(long short time memory,LSTM)网络的滑坡位移动态预测模型。首先,将滑坡累计位移分解为趋势项位移与波动项位移,利用多项式拟合预测趋势项位移;然后,通过灰色关联度筛选外界诱发因子并运用LSTM模型预测波动项位移;最后,叠加周期项位移与波动项位移,得到累计位移。以新滩滑坡为例,并与(recurrent neural network,RNN)模型以及传统静态神经网络模型BP、ELM进行对比分析,采用平均百分比误差(MAPE),均方根误差(RMSE),拟合优度(R 2)分别对其进行评价。应用结果表明:相比于传统静态模型,LSTM与RNN均适用于滑坡位移动态预测;对比结果显示,LSTM模型具有较好的预测精度,MAPE与RMSE分别为1.026%、0.327 mm,拟合优度R 2为0.978。