The biosynthesis of glycolipids in E.fascicula-tus was studied by 14C label and chase. The fatty acids in sulphoquinovosyl diacylglycerol (SQDG) were almost 16-car-bon and 18-carbon ones. In addition to the two fatty ...The biosynthesis of glycolipids in E.fascicula-tus was studied by 14C label and chase. The fatty acids in sulphoquinovosyl diacylglycerol (SQDG) were almost 16-car-bon and 18-carbon ones. In addition to the two fatty acids, monogalactosyl diacylglycerol (MGDG) and digalactosyl diacylglycerol (DGDG) contained 8.5 mol% and 31.0 mol% of eicosapentaenoic acid (20 : 5), respectively, and this fatty acid was usually distributed in the sn-1 position of the glyc-erol backbone. When plants were incubated with [2-14C] acetate, differences existed in the positional distribution of the labeled fatty acids in sn-1 and sn-2 among the three glycerolipids. In SQDG, 14C-labeled fatty acids were distributed uniformly in the sn-1 and sn-2 positions. In DGDG, 14C-labeled fatty acids were mainly distributed in the sn-2 position. In MGDG, the radioactivity of fatty acids in sn-1 position was far greater than that in sn-2 position after a 30 min pulse label, and the difference in radioactivity between the two positions展开更多
Purified PSI complexes from Spinacia Oleracea L. were exposed to the strong light (PFD=2300μmol m-2s-1) for various period. Along with the illumination the photo-damage process of pigments and proteins of PSI complex...Purified PSI complexes from Spinacia Oleracea L. were exposed to the strong light (PFD=2300μmol m-2s-1) for various period. Along with the illumination the photo-damage process of pigments and proteins of PSI complexes was investigated using absorption, fluorescence, circular dichroism (CD) spectroscopy and SDS-PAGE. It was found from the optical absorption spectra that the maximal ab-sorbance of PSI complexes decreased and maximal peaks blue-shifted during the illumination, and the forth derivative spectra demonstrated that the absorbance decreasing at red region mainly resulted from the aborbance decreasing of the long wavelength Chla, implying that the long-wavelength Chla was readily to be bleached. The CD signals contributed by LHCI decreased more rapidly than other CD signals con-tributed by Chla and Carotenoid, indicating that the LHCI was more sensitive to light than core complexes. It was observed by SDS-PAGE that some small polypeptides of PSI complexes were damaged earlier than reaction展开更多
Histidine coordinated to Chl a is a distinct characteristic of Chl a in vivo. By usinghistidine analogue of 1-methylimidazole (C4H6N2) and measuring the UV/vis absorption, CD and MCD spectra of the interaction between...Histidine coordinated to Chl a is a distinct characteristic of Chl a in vivo. By usinghistidine analogue of 1-methylimidazole (C4H6N2) and measuring the UV/vis absorption, CD and MCD spectra of the interaction between C4H6N2and Chl a in CCI4, we have obtained that: (i) In pure CCI4 solvent, Chl a molecule is in five-coordinate state, and two Chl a molecules form an asymmetric compact-dimer with strong coupling interaction. We propose that the two Chl a molecules are connected by two unequally coordinated Mg-O bonds (the two oxygen atoms come from the C=O of C131 keto and C17 ester, respectively); (ii) when the molar ratio of C4H6N2/Chl a is 0.5 or 1 (corresponding to 2Chl a #1C4H6N2 and 2Chl a ·2C4H6N2, respectively), significant changes have been observed in the absorption, CD and MCD spectra, which indicate that the Chl a remains in dimer form, but the coupling interaction between them reduces greatly. We postulate that C4H6N2 replaces the ligation of C=O of C17 ester and C131 keto to Mg atoms展开更多
Steady-state and time-resolved fluo- rescence spectroscopies have been used to study the excited state properties of Chl a in different ag- gregation forms of light-harvesting complex II (LHC II) from an intertidal gr...Steady-state and time-resolved fluo- rescence spectroscopies have been used to study the excited state properties of Chl a in different ag- gregation forms of light-harvesting complex II (LHC II) from an intertidal green alga, Bryopsis corticulans, i.e. LHC II monomer, trimer and oligomer. When either Chl a or Chl b was selectively excited, the observed decrease in Chl a fluorescence in the oligomer is proved to be caused mainly by the fast fluorescence quenching among Chl a molecules, rather than by the decrease in Chl b-to-Chl a singlet excitation transfer efficiency. Analyses of the picosecond time-resolved fluorescence kinetics identified two exponential de- cay components in all of the three forms of LHC II: a longer-lived component (4.1―4.7 ns) originating from fluorescence emission of Chl a, and a shorter-lived one (135―540 ps) from the rapid equilibration of singlet excitation among Chl a molecules. The time constant of excitation equilibration is 135 ps in oli- gomer, 520 ps in trimer and 540 ps in monomer. These results imply that LHC II in oligomer form is inherently able to quench Chl a excitation, a mecha- nism which may be related to the photoprotection of PS II via changing the degree of LHC II aggregation in Bryopsis corticulans.展开更多
In order to study the functions of cytochrome b559 (Cyt b559) in photosystem two (PSII) activity, mutant S24F of Chlamydomonas reinhardtii was constructed using site directed mutagenesis, in which Serine24 (Ser24) loc...In order to study the functions of cytochrome b559 (Cyt b559) in photosystem two (PSII) activity, mutant S24F of Chlamydomonas reinhardtii was constructed using site directed mutagenesis, in which Serine24 (Ser24) locating downstream of Histidine23 (His23) in α subunit of Cyt b559 was replaced by Phenylalanine (Phe). Physiological and biochemical analysis showed that mutant S24F could be grown photoautotrophically or photoheterotrophically. However, their growth rate was slower either on HSM or TAP medium than that of the control; Analysis of PSII activity revealed that its oxygen evolution was about 71% of wild type (WT); The Photochemical efficiency of PSII (Fv/Fm) of S24F was reduced 0.23 compared with WT; S24F was more sensitive to strong light irradiance than the wild type; Furthermore, SDS-PAGE and Western-blotting analysis indicated that the expression levels of α subunit of Cyt b559, LHCII and PsbO of S24F were a little less than those of the wild type. Overall, these data suggests that Ser24 plays a significant role in making Cyt b559 structure maintain PSII complex activity of oxygen evolution although it is not directly bound to heme group.展开更多
基金This work was supportedby the National Natural Science Foundation of China (Grant No. 39890390), the One-Hundred-Scientist Program of the Chinese Academy of Sciences, the State Basic Research Development Plan of China (Grant No. G1998010100) and the I
文摘The biosynthesis of glycolipids in E.fascicula-tus was studied by 14C label and chase. The fatty acids in sulphoquinovosyl diacylglycerol (SQDG) were almost 16-car-bon and 18-carbon ones. In addition to the two fatty acids, monogalactosyl diacylglycerol (MGDG) and digalactosyl diacylglycerol (DGDG) contained 8.5 mol% and 31.0 mol% of eicosapentaenoic acid (20 : 5), respectively, and this fatty acid was usually distributed in the sn-1 position of the glyc-erol backbone. When plants were incubated with [2-14C] acetate, differences existed in the positional distribution of the labeled fatty acids in sn-1 and sn-2 among the three glycerolipids. In SQDG, 14C-labeled fatty acids were distributed uniformly in the sn-1 and sn-2 positions. In DGDG, 14C-labeled fatty acids were mainly distributed in the sn-2 position. In MGDG, the radioactivity of fatty acids in sn-1 position was far greater than that in sn-2 position after a 30 min pulse label, and the difference in radioactivity between the two positions
基金This work was supported by the National Natural Science Foundation of China (Grant No. 39890390) the State Key Basic Research and Development Program (Grant No. G1998010100) and the Innovative Foundation of Laboratory of Photosynthesis Basic Research
文摘Purified PSI complexes from Spinacia Oleracea L. were exposed to the strong light (PFD=2300μmol m-2s-1) for various period. Along with the illumination the photo-damage process of pigments and proteins of PSI complexes was investigated using absorption, fluorescence, circular dichroism (CD) spectroscopy and SDS-PAGE. It was found from the optical absorption spectra that the maximal ab-sorbance of PSI complexes decreased and maximal peaks blue-shifted during the illumination, and the forth derivative spectra demonstrated that the absorbance decreasing at red region mainly resulted from the aborbance decreasing of the long wavelength Chla, implying that the long-wavelength Chla was readily to be bleached. The CD signals contributed by LHCI decreased more rapidly than other CD signals con-tributed by Chla and Carotenoid, indicating that the LHCI was more sensitive to light than core complexes. It was observed by SDS-PAGE that some small polypeptides of PSI complexes were damaged earlier than reaction
文摘Histidine coordinated to Chl a is a distinct characteristic of Chl a in vivo. By usinghistidine analogue of 1-methylimidazole (C4H6N2) and measuring the UV/vis absorption, CD and MCD spectra of the interaction between C4H6N2and Chl a in CCI4, we have obtained that: (i) In pure CCI4 solvent, Chl a molecule is in five-coordinate state, and two Chl a molecules form an asymmetric compact-dimer with strong coupling interaction. We propose that the two Chl a molecules are connected by two unequally coordinated Mg-O bonds (the two oxygen atoms come from the C=O of C131 keto and C17 ester, respectively); (ii) when the molar ratio of C4H6N2/Chl a is 0.5 or 1 (corresponding to 2Chl a #1C4H6N2 and 2Chl a ·2C4H6N2, respectively), significant changes have been observed in the absorption, CD and MCD spectra, which indicate that the Chl a remains in dimer form, but the coupling interaction between them reduces greatly. We postulate that C4H6N2 replaces the ligation of C=O of C17 ester and C131 keto to Mg atoms
基金This work was supported by the National Natural Science Foundation of China(Grant No.20273077)the Knowledge Innovation Program of Chinese Academy of Sciences(Grant No.KSCX2-SW-130).
文摘Steady-state and time-resolved fluo- rescence spectroscopies have been used to study the excited state properties of Chl a in different ag- gregation forms of light-harvesting complex II (LHC II) from an intertidal green alga, Bryopsis corticulans, i.e. LHC II monomer, trimer and oligomer. When either Chl a or Chl b was selectively excited, the observed decrease in Chl a fluorescence in the oligomer is proved to be caused mainly by the fast fluorescence quenching among Chl a molecules, rather than by the decrease in Chl b-to-Chl a singlet excitation transfer efficiency. Analyses of the picosecond time-resolved fluorescence kinetics identified two exponential de- cay components in all of the three forms of LHC II: a longer-lived component (4.1―4.7 ns) originating from fluorescence emission of Chl a, and a shorter-lived one (135―540 ps) from the rapid equilibration of singlet excitation among Chl a molecules. The time constant of excitation equilibration is 135 ps in oli- gomer, 520 ps in trimer and 540 ps in monomer. These results imply that LHC II in oligomer form is inherently able to quench Chl a excitation, a mecha- nism which may be related to the photoprotection of PS II via changing the degree of LHC II aggregation in Bryopsis corticulans.
基金Supported by the National Basic Research Program (973 Program) (Grant No. G1988010100)the National Natural Science Foundation of China (Grant No. 088121A)
文摘In order to study the functions of cytochrome b559 (Cyt b559) in photosystem two (PSII) activity, mutant S24F of Chlamydomonas reinhardtii was constructed using site directed mutagenesis, in which Serine24 (Ser24) locating downstream of Histidine23 (His23) in α subunit of Cyt b559 was replaced by Phenylalanine (Phe). Physiological and biochemical analysis showed that mutant S24F could be grown photoautotrophically or photoheterotrophically. However, their growth rate was slower either on HSM or TAP medium than that of the control; Analysis of PSII activity revealed that its oxygen evolution was about 71% of wild type (WT); The Photochemical efficiency of PSII (Fv/Fm) of S24F was reduced 0.23 compared with WT; S24F was more sensitive to strong light irradiance than the wild type; Furthermore, SDS-PAGE and Western-blotting analysis indicated that the expression levels of α subunit of Cyt b559, LHCII and PsbO of S24F were a little less than those of the wild type. Overall, these data suggests that Ser24 plays a significant role in making Cyt b559 structure maintain PSII complex activity of oxygen evolution although it is not directly bound to heme group.