Nano-crystalline silicon(nc-Si)films embedded in SiO2 exhibited strong visible light luminescence at room temperature.The energies of photoluminescence peak were found to be more than 1.9eV and the peaks shifted to hi...Nano-crystalline silicon(nc-Si)films embedded in SiO2 exhibited strong visible light luminescence at room temperature.The energies of photoluminescence peak were found to be more than 1.9eV and the peaks shifted to higher energies when nano-Si films were post-oxidized.The photoluminescence intensity depended significantly on the size of the grains and the characteristics of the oxidized surface.Microcrystalline silicon grains of 2-3nm average size and radiation recombination centers located on the nanoscale silicon grain surfaces and located in the Si oxide layers are considered to be the source of the visible luminescence.展开更多
Large low-field magnetoresistance(LFMR)of∆p/pH=40%is obtained at 163 K within±3000 Oe in a polycrystalline La_(0.7)Ca_(0.3)MnO_(3)(LCMO)films prepared by pulsed laser deposition.The ratio∆p/pH increases almost li...Large low-field magnetoresistance(LFMR)of∆p/pH=40%is obtained at 163 K within±3000 Oe in a polycrystalline La_(0.7)Ca_(0.3)MnO_(3)(LCMO)films prepared by pulsed laser deposition.The ratio∆p/pH increases almost linearly with H in the measuring magnetic field range and the peak of LFMR ratios is observed near the resistivity peak temperature,which is different from the observation of spin-polarized intergrain tunnels.This experiment suggests that grain boundaries have large influences on the LFMR.The results indicate that a suitable film process can be used to increase the LFMR of LCMO films.展开更多
染料敏化太阳能电池(dye-sensitized solar cells,DSCs)因其制备工艺简单、成本低廉以及优异的光学性质在近年来引起了大家的广泛关注.为了获得更优的光电性能,利用球磨法制备了一系列不同含量纳米结构SiO2@Au和固定含量石墨烯协同掺杂...染料敏化太阳能电池(dye-sensitized solar cells,DSCs)因其制备工艺简单、成本低廉以及优异的光学性质在近年来引起了大家的广泛关注.为了获得更优的光电性能,利用球磨法制备了一系列不同含量纳米结构SiO2@Au和固定含量石墨烯协同掺杂的复合光阳极薄膜,并制备了相应的DSCs.研究了纳米结构SiO2@Au和石墨烯联合掺杂对光阳极及其相应DSCs光电转换性能的影响.金纳米颗粒因其局域表面等离子体共振效应能够有效提高DSCs的短路电流密度.而石墨烯作为典型的二维材料,具有较大的比表面积以及高导电性等优异性质,有利于增加薄膜的比表面积.当纳米结构SiO2@Au和石墨烯协同掺杂至光阳极薄膜内部,且SiO2@Au掺杂量为1.5%时,相应电池的短路电流密度为15.59 mA·cm–2,光电转换效率为6.68%,相比基于传统纯TiO2光阳极电池的性能分别提高了15.67%和8.8%.研究表明,基于不同含量复合纳米结构SiO2@Au和固定量石墨烯共掺的DSCs性能的提高,主要归因于复合纳米结构SiO2@Au的掺入,其中分布较为均匀的金纳米颗粒作为光学天线可以将光局域到颗粒表面,增强表面电磁场强度,有效增强光与物质的相互作用,优化了染料的光吸收能力,增加薄膜内部光生载流子数量.而石墨烯的引入则改善了光阳极薄膜的比表面积,增加了薄膜整体对染料的吸附量,且石墨烯良好的导电性能加快了光生载流子的传输,两者协同作用实现了DSCs的光电转换性能的优化.展开更多
基金the National Natural Science Foundation of China under Grant No.19475027Natural Science Foundation of China under Grant No.950822.
文摘Nano-crystalline silicon(nc-Si)films embedded in SiO2 exhibited strong visible light luminescence at room temperature.The energies of photoluminescence peak were found to be more than 1.9eV and the peaks shifted to higher energies when nano-Si films were post-oxidized.The photoluminescence intensity depended significantly on the size of the grains and the characteristics of the oxidized surface.Microcrystalline silicon grains of 2-3nm average size and radiation recombination centers located on the nanoscale silicon grain surfaces and located in the Si oxide layers are considered to be the source of the visible luminescence.
基金Supported by the National Natural Science Foundation of China under Grant No.19674001.
文摘Large low-field magnetoresistance(LFMR)of∆p/pH=40%is obtained at 163 K within±3000 Oe in a polycrystalline La_(0.7)Ca_(0.3)MnO_(3)(LCMO)films prepared by pulsed laser deposition.The ratio∆p/pH increases almost linearly with H in the measuring magnetic field range and the peak of LFMR ratios is observed near the resistivity peak temperature,which is different from the observation of spin-polarized intergrain tunnels.This experiment suggests that grain boundaries have large influences on the LFMR.The results indicate that a suitable film process can be used to increase the LFMR of LCMO films.
文摘染料敏化太阳能电池(dye-sensitized solar cells,DSCs)因其制备工艺简单、成本低廉以及优异的光学性质在近年来引起了大家的广泛关注.为了获得更优的光电性能,利用球磨法制备了一系列不同含量纳米结构SiO2@Au和固定含量石墨烯协同掺杂的复合光阳极薄膜,并制备了相应的DSCs.研究了纳米结构SiO2@Au和石墨烯联合掺杂对光阳极及其相应DSCs光电转换性能的影响.金纳米颗粒因其局域表面等离子体共振效应能够有效提高DSCs的短路电流密度.而石墨烯作为典型的二维材料,具有较大的比表面积以及高导电性等优异性质,有利于增加薄膜的比表面积.当纳米结构SiO2@Au和石墨烯协同掺杂至光阳极薄膜内部,且SiO2@Au掺杂量为1.5%时,相应电池的短路电流密度为15.59 mA·cm–2,光电转换效率为6.68%,相比基于传统纯TiO2光阳极电池的性能分别提高了15.67%和8.8%.研究表明,基于不同含量复合纳米结构SiO2@Au和固定量石墨烯共掺的DSCs性能的提高,主要归因于复合纳米结构SiO2@Au的掺入,其中分布较为均匀的金纳米颗粒作为光学天线可以将光局域到颗粒表面,增强表面电磁场强度,有效增强光与物质的相互作用,优化了染料的光吸收能力,增加薄膜内部光生载流子数量.而石墨烯的引入则改善了光阳极薄膜的比表面积,增加了薄膜整体对染料的吸附量,且石墨烯良好的导电性能加快了光生载流子的传输,两者协同作用实现了DSCs的光电转换性能的优化.