Nanosized SSZ-13 zeolite was synthesized by traditional hydrothermal method using N,N,N-trimethyl-1-adamantanaminium hydroxide as the structure-directing agent (SDA). The influence of different preparative conditions ...Nanosized SSZ-13 zeolite was synthesized by traditional hydrothermal method using N,N,N-trimethyl-1-adamantanaminium hydroxide as the structure-directing agent (SDA). The influence of different preparative conditions of nanosized SSZ-13 was investigated systematically. The synthetic zeolites were characterized by X-ray powder diffraction (XRD), nitrogen physisorption, and scanning electron microscopy (SEM). By means of the self-assembled method, the thin SSZ-13/polyvinyl alcohol nanocomposite membranes were obtained by incorporating the nanosized SSZ-13 zeolite into the polymeric precursor (polyvinyl alcohol (PVA)). The permeation properties of pure CO2 and CH4 through the mixed matrix membranes (MMMs) were measured. The results showed that the highly crystalline SSZ-13 zeolite in a dispersed nanocrystal form with a controllable particle size of 100 nm could be hydrothermally synthesized by optimizing the synthetic parameters and the selectivity of CO2/CH4 of the MMMs could reach a value of 40 by changing the amount of nanosized SSZ-13 zeolite.展开更多
Effects of metal oxide in ZSM-5 zeolite on its catalytic performance in fluid catalytic cracking reaction were studied via characterization by XRD and FT-IR spectroscopy using pyridine and collidine as molecular probe...Effects of metal oxide in ZSM-5 zeolite on its catalytic performance in fluid catalytic cracking reaction were studied via characterization by XRD and FT-IR spectroscopy using pyridine and collidine as molecular probes,and the modified ZSM-5 zeolite was evaluated in a micro reactor using standard light diesel fraction as the feedstock.Test results indicate that the metal species introduced into the ZSM-5 zeolite had led to the formation of Lewis acid centers.When the modified ZSM-5 zeolite with the metal species on its surface was used as the catalyst in FCC reaction,both the propylene yield and the propylene concentration in the liquefied petroleum gas increased,but in the meantime,more hydrogen and coke were formed at high conversion rate under the joint action of nonselective cracking of Lewis acid centers and dehydrogenation at metal centers on its outside surface.展开更多
文摘Nanosized SSZ-13 zeolite was synthesized by traditional hydrothermal method using N,N,N-trimethyl-1-adamantanaminium hydroxide as the structure-directing agent (SDA). The influence of different preparative conditions of nanosized SSZ-13 was investigated systematically. The synthetic zeolites were characterized by X-ray powder diffraction (XRD), nitrogen physisorption, and scanning electron microscopy (SEM). By means of the self-assembled method, the thin SSZ-13/polyvinyl alcohol nanocomposite membranes were obtained by incorporating the nanosized SSZ-13 zeolite into the polymeric precursor (polyvinyl alcohol (PVA)). The permeation properties of pure CO2 and CH4 through the mixed matrix membranes (MMMs) were measured. The results showed that the highly crystalline SSZ-13 zeolite in a dispersed nanocrystal form with a controllable particle size of 100 nm could be hydrothermally synthesized by optimizing the synthetic parameters and the selectivity of CO2/CH4 of the MMMs could reach a value of 40 by changing the amount of nanosized SSZ-13 zeolite.
文摘Effects of metal oxide in ZSM-5 zeolite on its catalytic performance in fluid catalytic cracking reaction were studied via characterization by XRD and FT-IR spectroscopy using pyridine and collidine as molecular probes,and the modified ZSM-5 zeolite was evaluated in a micro reactor using standard light diesel fraction as the feedstock.Test results indicate that the metal species introduced into the ZSM-5 zeolite had led to the formation of Lewis acid centers.When the modified ZSM-5 zeolite with the metal species on its surface was used as the catalyst in FCC reaction,both the propylene yield and the propylene concentration in the liquefied petroleum gas increased,but in the meantime,more hydrogen and coke were formed at high conversion rate under the joint action of nonselective cracking of Lewis acid centers and dehydrogenation at metal centers on its outside surface.