In this study, a well-designed experimental setup is used to determine the rock-breaking performance of a high-pressure supercritical carbon dioxide (SC-CO2) jet. Its rock-breaking performance is first compared with...In this study, a well-designed experimental setup is used to determine the rock-breaking performance of a high-pressure supercritical carbon dioxide (SC-CO2) jet. Its rock-breaking performance is first compared with that of a high-pressure water jet under the same operation conditions. The effects of five major factors that affect the rock-breaking performance of the high-pressure SC-CO2 jet, i.e., the nozzle diameter, the standoff distance, the jet pressure, the rock compressive strength and the jet temperature are experimentally determined. The experimental results indicate that the rock-breaking performance of the SC-CO2 jet is significantly improved over the high-pressure water jet. It is also found that the rock-breaking performance of the SC-CO2 jet is improved with the increase of the nozzle diameter or the standoff distance, until the nozzle diameter or the standoff distance reaches a certain critical value and after that it begins to deteriorate. The rock-breaking performance of the SC-CO2 jet improves monotonically with the increase of the jet pressure, while it shows a monotonic deterioration with the increase of the rock compressive strength. In addition, it is found that, under the same working conditions, the SC-CO2 jet can always provide a better rock-breaking performance than the subcritical liquid CO2 jet.展开更多
基金the National Natural Science Foundation of China (Grant Nos. 50974130, 51034007)the National Key Basic Research and Development Program of China (973 Program, 2010CB226700)the Excellent Ph.D. Thesis Training Fund and Graduate Independent Innovation Project of China University of Petroleum(Grant No. 11CX06021A)
文摘In this study, a well-designed experimental setup is used to determine the rock-breaking performance of a high-pressure supercritical carbon dioxide (SC-CO2) jet. Its rock-breaking performance is first compared with that of a high-pressure water jet under the same operation conditions. The effects of five major factors that affect the rock-breaking performance of the high-pressure SC-CO2 jet, i.e., the nozzle diameter, the standoff distance, the jet pressure, the rock compressive strength and the jet temperature are experimentally determined. The experimental results indicate that the rock-breaking performance of the SC-CO2 jet is significantly improved over the high-pressure water jet. It is also found that the rock-breaking performance of the SC-CO2 jet is improved with the increase of the nozzle diameter or the standoff distance, until the nozzle diameter or the standoff distance reaches a certain critical value and after that it begins to deteriorate. The rock-breaking performance of the SC-CO2 jet improves monotonically with the increase of the jet pressure, while it shows a monotonic deterioration with the increase of the rock compressive strength. In addition, it is found that, under the same working conditions, the SC-CO2 jet can always provide a better rock-breaking performance than the subcritical liquid CO2 jet.