车联网中车与车以及车与基础设施间的实时通信问题越来越受到关注,而车辆的高速移动性和无线通信的不可靠性大大降低了数据传输效率。为了解决这个问题,针对路边单元(Road Side Unit, RSU)接入选择问题进行了研究,并提出了一种新的RSU...车联网中车与车以及车与基础设施间的实时通信问题越来越受到关注,而车辆的高速移动性和无线通信的不可靠性大大降低了数据传输效率。为了解决这个问题,针对路边单元(Road Side Unit, RSU)接入选择问题进行了研究,并提出了一种新的RSU接入选择算法,来合理调配车辆与RSU的连接。车辆选择RSU进行接入的常规方法是基于车辆的接收信号强度,但它未充分考虑车辆的高速移动性,这会导致接入RSU的车辆的数目大幅度变化。所以采用实时监测和预测相结合的方法合理调配RSU上连接的车辆,让每一RSU上连接的车辆数目波动幅度达到最小,并且保证RSU得到充分利用。仿真结果表明,此算法能够有效降低数据包碰撞、增强无碰撞传输概率、提高成功传包率。展开更多
A circular seam cooling nozzle and its online control system have been developed to reduce the center segregation in high carbon steel billets by decreasing the superheat of the molten steel and improving the equiaxed...A circular seam cooling nozzle and its online control system have been developed to reduce the center segregation in high carbon steel billets by decreasing the superheat of the molten steel and improving the equiaxed crystal ratio based on the numerical results. An industrial experiment has been carried out on a 150 mm× 150 mm caster to investigate the effect of the circular seam cooling nozzle on the superheat removal of the molten steel. The results show that the circular seam cooling nozzle can be used to control the casting temperature in a closed loop control system. The online control system can be effectively adapted to the variation of operating parameters. The casting lasts about 4 h and about 400 t steel is successfully produced in a continuous operation. The removal of about 14 ℃ superheat and the improvement of approximate 10% equiaxed crystal ratio can be achieved by the newly developed circular seam cooling nozzle.展开更多
文摘车联网中车与车以及车与基础设施间的实时通信问题越来越受到关注,而车辆的高速移动性和无线通信的不可靠性大大降低了数据传输效率。为了解决这个问题,针对路边单元(Road Side Unit, RSU)接入选择问题进行了研究,并提出了一种新的RSU接入选择算法,来合理调配车辆与RSU的连接。车辆选择RSU进行接入的常规方法是基于车辆的接收信号强度,但它未充分考虑车辆的高速移动性,这会导致接入RSU的车辆的数目大幅度变化。所以采用实时监测和预测相结合的方法合理调配RSU上连接的车辆,让每一RSU上连接的车辆数目波动幅度达到最小,并且保证RSU得到充分利用。仿真结果表明,此算法能够有效降低数据包碰撞、增强无碰撞传输概率、提高成功传包率。
基金Item Sponsored by National Basic Research Program of China (2004CB619107)
文摘A circular seam cooling nozzle and its online control system have been developed to reduce the center segregation in high carbon steel billets by decreasing the superheat of the molten steel and improving the equiaxed crystal ratio based on the numerical results. An industrial experiment has been carried out on a 150 mm× 150 mm caster to investigate the effect of the circular seam cooling nozzle on the superheat removal of the molten steel. The results show that the circular seam cooling nozzle can be used to control the casting temperature in a closed loop control system. The online control system can be effectively adapted to the variation of operating parameters. The casting lasts about 4 h and about 400 t steel is successfully produced in a continuous operation. The removal of about 14 ℃ superheat and the improvement of approximate 10% equiaxed crystal ratio can be achieved by the newly developed circular seam cooling nozzle.