In recent years, 10 Gbit/s Ethemet passive optical networks (10G EPON) have been gaining considerable interests because of its high bandwidth capability. To ensure smooth transition from 1 Gbit/s to 10 Gbit/s equipm...In recent years, 10 Gbit/s Ethemet passive optical networks (10G EPON) have been gaining considerable interests because of its high bandwidth capability. To ensure smooth transition from 1 Gbit/s to 10 Gbit/s equipment and to avoid a significant one-time investment into such a cost-sensitive market, coexistence of gigabit Ethernet passive optical networks (GEPON) and 10G EPON system are necessary. In this article, coexistence system architecture and a novel bandwidth allocation algorithm called weight-optimized dynamic bandwidth allocation for coexistence EPON (WOCE-DBA) for the system is proposed. The simulation results show that this algorithm can guarantee fair bandwidth sharing among different optical network unit (ONU) groups, without ignoring the inter-ONU and intra-ONU fairness. Most importantly, it can flexibly adapt to the system composition variations and save efforts needed to modify the bandwidth scheduling mechanism during the migration process from GEPON to 10G EPON.展开更多
基金supported by the National Basic Research Program of China (2007CB310705)the National Natural Science Foundation of China (60772024), (2007AA01Z255)+1 种基金PCSIRT (IRT0609)ISTCP (2006DFA11040) of China
文摘In recent years, 10 Gbit/s Ethemet passive optical networks (10G EPON) have been gaining considerable interests because of its high bandwidth capability. To ensure smooth transition from 1 Gbit/s to 10 Gbit/s equipment and to avoid a significant one-time investment into such a cost-sensitive market, coexistence of gigabit Ethernet passive optical networks (GEPON) and 10G EPON system are necessary. In this article, coexistence system architecture and a novel bandwidth allocation algorithm called weight-optimized dynamic bandwidth allocation for coexistence EPON (WOCE-DBA) for the system is proposed. The simulation results show that this algorithm can guarantee fair bandwidth sharing among different optical network unit (ONU) groups, without ignoring the inter-ONU and intra-ONU fairness. Most importantly, it can flexibly adapt to the system composition variations and save efforts needed to modify the bandwidth scheduling mechanism during the migration process from GEPON to 10G EPON.