anoxygenic phototrophic bacteria (AAPB), which form a unique functional group of heterotrophic bacteria, have the abilit,to utilize light energy. The impact of carbon source and light intensity on the growth and bac...anoxygenic phototrophic bacteria (AAPB), which form a unique functional group of heterotrophic bacteria, have the abilit,to utilize light energy. The impact of carbon source and light intensity on the growth and bacteriochlorophyn a ( BChl a) expression of a typical strain of AAPB, Erythrobacter longus strain DSMZ6997 was examined during batch culture and continuous culture. The results showed that the expression of BChl a in DSMZ6997 was regulated by both carbon-source and light conditions, and was stimulated by low availability of carbon but inhibited by light to a certain extent at 300 lx and completely at 1 500 lx. In contrast, cell abundance, and even cell size of this strain, was substantially enhanced under light/dark cycle cultivation conditions over dark conditions, indicating the promotion of growth by light. These results led to the conclusion that utilization of light through BChl a helps AAPB to survive under carbon stress, while light at high intensity is harmful to the synthesis of BChl a in AAPB.展开更多
基金This study was supported by the National Natural Science Foundation of China under contract Nos 40232021,40576063 and 40521003the Ministry of Science and Technology of China under contract Nos 2005AA635240 and 2003DF000040.
文摘anoxygenic phototrophic bacteria (AAPB), which form a unique functional group of heterotrophic bacteria, have the abilit,to utilize light energy. The impact of carbon source and light intensity on the growth and bacteriochlorophyn a ( BChl a) expression of a typical strain of AAPB, Erythrobacter longus strain DSMZ6997 was examined during batch culture and continuous culture. The results showed that the expression of BChl a in DSMZ6997 was regulated by both carbon-source and light conditions, and was stimulated by low availability of carbon but inhibited by light to a certain extent at 300 lx and completely at 1 500 lx. In contrast, cell abundance, and even cell size of this strain, was substantially enhanced under light/dark cycle cultivation conditions over dark conditions, indicating the promotion of growth by light. These results led to the conclusion that utilization of light through BChl a helps AAPB to survive under carbon stress, while light at high intensity is harmful to the synthesis of BChl a in AAPB.