Silicate perovskites((Mg, Fe)SiO 3 and CaS iO 3) are believed to be the major constituent minerals in the lower mantle. The phase relation, solid solution, spin state of iron and water solubility related to the lo...Silicate perovskites((Mg, Fe)SiO 3 and CaS iO 3) are believed to be the major constituent minerals in the lower mantle. The phase relation, solid solution, spin state of iron and water solubility related to the lower mantle perovskite are of great effect on the geodynamics of the Earth's interior and on ore mineralization. Previous studies indicate that a large amount of iron coupled with aluminum can incorporate into magnesium perovskite, but this is discordant with the disproportionation of(Mg,Fe)SiO 3 perovskite into iron-free MgS i O3 perovskite and hexagonal phase(Mg0.6Fe0.4)SiO 3 in the Earth's lower mantle. MnS iO 3 is the first chemical component confirmed to form wide range solid solution with Ca SiO 3 perovskite and complete solid solution with MgS i O3 perovskite at the P-T conditions in the lower mantle, and addition of Mn Si O3 will strongly affects the mutual solubility between Mg Si O3 and CaS iO 3. The spin state of iron is deeply depends on the site occupation of the Fe3+or Fe2+, the synthesis and the annealing conditions of the sample. It seems that the spin state of Fe2+ in the lower mantle perovskite can be settled as high spin, however, the existence of intermediate spin or low spin state of Fe2+ in perovskite has not been clarified. Moreover, different results have also been reported for the spin state of Fe3+ in perovskite. The water solubility of the lower mantle perovskite is related with its composition. In pure Mg SiO 3 perovskite, only less than 500 ppm water was reported. Al–Mg Si O3 perovskite or Al–Fe–MgS iO 3 perovskite in the lower mantle accommodates water of 1100 to 1800 ppm. Further experiments are necessary to clarify the detailed conditions for perovskite solid solution, to reliably analyze the valence and spin states of iron in the coexisting iron-bearing phases, and to compare the water solubility of different phases at different layers for deeply understanding the geodynamics of the Earth's interior and ore mineralization.展开更多
Stripe rust, caused by Puccinia striiformis f. sp. tritici(Pst), is one of the most damaging diseases of wheat. Chinese wheat cultivar Mianmai 41 showed high resistance against most of the prevailing Pst races in Ch...Stripe rust, caused by Puccinia striiformis f. sp. tritici(Pst), is one of the most damaging diseases of wheat. Chinese wheat cultivar Mianmai 41 showed high resistance against most of the prevailing Pst races in China. Genetic analysis of the F1, F2 and F2:3 populations from a cross between Mianmai 41 and a susceptible line Mingxian 169 indicated that resistance to Pst race CYR32 was conferred by a single dominant gene, temporarily designated as Yr MY41. Molecular marker analysis placed the gene on chromosome 1B near the centromere. Six co-dominant genomic SSR markers Xwmc329, Xwmc406, Xgwm18, Xgwm131, Xgwm413, and Xbarc312, and one STS marker Xwe173 linked with the resistance gene. The two closest flanking SSR markers were Xgwm18 and Xwmc406, with genetic distances of 2.0 and 4.9 c M, respectively. A seedling test with 29 Pst isolates indicated the reaction patterns of Mianmai 41 were different from those of lines carrying Yr3, Yr9, Yr10, Yr15, Yr26, and Yr CH42 on chromosome 1B. Allelic tests indicated that Yr MY41 is likely a new allele at Yr26 locus.展开更多
基金partly supported by projects from JSPS KAKENHI (Grant No. 18340167)MEXT KAKENHI (Grant No. 20103002)+2 种基金NSFC (Grand No.90914002)China Geological Survey (Grant No. 1212011220926)the Ministry of Education of China (Grant No. 20130022110003)
文摘Silicate perovskites((Mg, Fe)SiO 3 and CaS iO 3) are believed to be the major constituent minerals in the lower mantle. The phase relation, solid solution, spin state of iron and water solubility related to the lower mantle perovskite are of great effect on the geodynamics of the Earth's interior and on ore mineralization. Previous studies indicate that a large amount of iron coupled with aluminum can incorporate into magnesium perovskite, but this is discordant with the disproportionation of(Mg,Fe)SiO 3 perovskite into iron-free MgS i O3 perovskite and hexagonal phase(Mg0.6Fe0.4)SiO 3 in the Earth's lower mantle. MnS iO 3 is the first chemical component confirmed to form wide range solid solution with Ca SiO 3 perovskite and complete solid solution with MgS i O3 perovskite at the P-T conditions in the lower mantle, and addition of Mn Si O3 will strongly affects the mutual solubility between Mg Si O3 and CaS iO 3. The spin state of iron is deeply depends on the site occupation of the Fe3+or Fe2+, the synthesis and the annealing conditions of the sample. It seems that the spin state of Fe2+ in the lower mantle perovskite can be settled as high spin, however, the existence of intermediate spin or low spin state of Fe2+ in perovskite has not been clarified. Moreover, different results have also been reported for the spin state of Fe3+ in perovskite. The water solubility of the lower mantle perovskite is related with its composition. In pure Mg SiO 3 perovskite, only less than 500 ppm water was reported. Al–Mg Si O3 perovskite or Al–Fe–MgS iO 3 perovskite in the lower mantle accommodates water of 1100 to 1800 ppm. Further experiments are necessary to clarify the detailed conditions for perovskite solid solution, to reliably analyze the valence and spin states of iron in the coexisting iron-bearing phases, and to compare the water solubility of different phases at different layers for deeply understanding the geodynamics of the Earth's interior and ore mineralization.
基金supported by the China Agriculture Research System(CARS03)the National Basic Research Program of China(2011CB100100)
文摘Stripe rust, caused by Puccinia striiformis f. sp. tritici(Pst), is one of the most damaging diseases of wheat. Chinese wheat cultivar Mianmai 41 showed high resistance against most of the prevailing Pst races in China. Genetic analysis of the F1, F2 and F2:3 populations from a cross between Mianmai 41 and a susceptible line Mingxian 169 indicated that resistance to Pst race CYR32 was conferred by a single dominant gene, temporarily designated as Yr MY41. Molecular marker analysis placed the gene on chromosome 1B near the centromere. Six co-dominant genomic SSR markers Xwmc329, Xwmc406, Xgwm18, Xgwm131, Xgwm413, and Xbarc312, and one STS marker Xwe173 linked with the resistance gene. The two closest flanking SSR markers were Xgwm18 and Xwmc406, with genetic distances of 2.0 and 4.9 c M, respectively. A seedling test with 29 Pst isolates indicated the reaction patterns of Mianmai 41 were different from those of lines carrying Yr3, Yr9, Yr10, Yr15, Yr26, and Yr CH42 on chromosome 1B. Allelic tests indicated that Yr MY41 is likely a new allele at Yr26 locus.