One-step patch near-field acoustical holography(PNAH) is a powerful tool for identifying noise sources from the partially known sound pressure field.The acoustical property to be reconstructed on the surface of intere...One-step patch near-field acoustical holography(PNAH) is a powerful tool for identifying noise sources from the partially known sound pressure field.The acoustical property to be reconstructed on the surface of interest is related to the partially measured pressure on the hologram surface in terms of sampling and bandlimiting matrices,which cost more in computation.A one-step procedure based on measuring of the normal component of the particle velocity is described,including the mathematical formulation.The numerical simulation shows that one-step PNAH based on particle velocity can obtain more accurately reconstructed results and it is also less sensitive to noise than the method based on pressure.These findings are confirmed by an underwater near-field acoustical holography experiment conducted with a vector hydrophone array.The experimental results have illustrated the high performance of one-step PNAH based on particle velocity in the reconstruction of sound field and the advantages of a vector hydrophone array in an underwater near-field measurement.展开更多
The phase errors among the components of a single acoustic vector sensor cause the direction-of-arrival(DOA) estimation error of the existing methods.In order to address this issue,a DOA estimation method is proposed,...The phase errors among the components of a single acoustic vector sensor cause the direction-of-arrival(DOA) estimation error of the existing methods.In order to address this issue,a DOA estimation method is proposed,which is robust to the phase errors.The proposed method first utilizes the Hadamard product of the principal eigenvector of the covariance matrix of the received signal by the single vector sensor and its conjugate vector to construct the spatial spectrum in order to estimate the DOA of the underwater target.Since the Hadamard product eliminates the phase errors,this estimation is independent of the phase errors.However,it is ambiguous.Afterwards,the phase-error estimate is explored to eliminate the ambiguity and get the correct DOA estimate.The proposed method performs independently of the phase errors and obtains high accuracy.The simulation results and the experimental result demonstrate the proposed method is robust to the phase errors.Furthermore,in the presence of the phase errors,it performs better than the average acoustic intensity method,the CAPON method,and the MUSIC method,in terms of estimation accuracy.In addition,the simulation results indicate that the estimation accuracy of the proposed method approaches to the Cramer-Rao bound(CRB).展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11204049)the National Defence Research Funds (Grant No.7131107 and 51310040202)the Fundamental Research Funds For the Central Universities(Grant No.HEUCFR1013 and HEUCF120504)
文摘One-step patch near-field acoustical holography(PNAH) is a powerful tool for identifying noise sources from the partially known sound pressure field.The acoustical property to be reconstructed on the surface of interest is related to the partially measured pressure on the hologram surface in terms of sampling and bandlimiting matrices,which cost more in computation.A one-step procedure based on measuring of the normal component of the particle velocity is described,including the mathematical formulation.The numerical simulation shows that one-step PNAH based on particle velocity can obtain more accurately reconstructed results and it is also less sensitive to noise than the method based on pressure.These findings are confirmed by an underwater near-field acoustical holography experiment conducted with a vector hydrophone array.The experimental results have illustrated the high performance of one-step PNAH based on particle velocity in the reconstruction of sound field and the advantages of a vector hydrophone array in an underwater near-field measurement.
基金supported by the National Natural Science Foundation of China (61701133,11674074)the Stable Supporting Fund of Acoustics Science and Technology Laboratory (SSJSWDZC2018003)。
文摘The phase errors among the components of a single acoustic vector sensor cause the direction-of-arrival(DOA) estimation error of the existing methods.In order to address this issue,a DOA estimation method is proposed,which is robust to the phase errors.The proposed method first utilizes the Hadamard product of the principal eigenvector of the covariance matrix of the received signal by the single vector sensor and its conjugate vector to construct the spatial spectrum in order to estimate the DOA of the underwater target.Since the Hadamard product eliminates the phase errors,this estimation is independent of the phase errors.However,it is ambiguous.Afterwards,the phase-error estimate is explored to eliminate the ambiguity and get the correct DOA estimate.The proposed method performs independently of the phase errors and obtains high accuracy.The simulation results and the experimental result demonstrate the proposed method is robust to the phase errors.Furthermore,in the presence of the phase errors,it performs better than the average acoustic intensity method,the CAPON method,and the MUSIC method,in terms of estimation accuracy.In addition,the simulation results indicate that the estimation accuracy of the proposed method approaches to the Cramer-Rao bound(CRB).