As a newly identified transcription factor in Candida albcians, CaSfl1 has been shown to be involved in cell flocculation and filamentation and in the negative regulation of several genes involved in hyphal growth. In...As a newly identified transcription factor in Candida albcians, CaSfl1 has been shown to be involved in cell flocculation and filamentation and in the negative regulation of several genes involved in hyphal growth. In this study, we constructed Casfl1△/△ mutants and confirmed that deletion of this gene indeed affected cell flocculation and filamentation. In addition, by RT-PCR we found that while Casfl1 repressed the expression of several hypha-specific genes including HWP1, ECE1, ALS1, ALS3, and FLO8, it strongly activated the expression of the heat-shock protein genes HSP30 and HSP90 under certain stress conditions. Therefore, we propose that CaSfl1 can act as both positive and negative regulators, thereby playing a dual role in transcriptional controls in Candida albicans.展开更多
Candida albicans is the most prominent opportunistic fungal pathogen in humans. Multiple factors are associated with the virulence of C. albicans, including morphogenesis, cell wall organization and growth rate. Here,...Candida albicans is the most prominent opportunistic fungal pathogen in humans. Multiple factors are associated with the virulence of C. albicans, including morphogenesis, cell wall organization and growth rate. Here, we describe the identification and functional characterization of CaECM25, a gene that has not been reported before. We constructed Caecm25?/? mutants and investigated the role of the gene in morphogenesis, cell wall organization and virulence. CaECM25 deletion resulted in defects in cell separation, a slower growth rate, reduced filamentous growth and attenuated adherence to plastic surfaces. The Caecm25?/? mutant was also significantly less virulent than wild type when tested for systemic infection in mice. Therefore, CaECM25 plays important roles in morphogenesis, cell wall organization and virulence.展开更多
基金the Joint Research Fund for Overseas Natural Science of China (Grant No. 30228001)National Basic Research Program of China (Grant No. 2007CB914401)
文摘As a newly identified transcription factor in Candida albcians, CaSfl1 has been shown to be involved in cell flocculation and filamentation and in the negative regulation of several genes involved in hyphal growth. In this study, we constructed Casfl1△/△ mutants and confirmed that deletion of this gene indeed affected cell flocculation and filamentation. In addition, by RT-PCR we found that while Casfl1 repressed the expression of several hypha-specific genes including HWP1, ECE1, ALS1, ALS3, and FLO8, it strongly activated the expression of the heat-shock protein genes HSP30 and HSP90 under certain stress conditions. Therefore, we propose that CaSfl1 can act as both positive and negative regulators, thereby playing a dual role in transcriptional controls in Candida albicans.
基金the Joint Research Fund for Overseas Natural Science of China(Grant No.30228001)National Basic Research Program of China(Grant No.2007CB914401)
文摘Candida albicans is the most prominent opportunistic fungal pathogen in humans. Multiple factors are associated with the virulence of C. albicans, including morphogenesis, cell wall organization and growth rate. Here, we describe the identification and functional characterization of CaECM25, a gene that has not been reported before. We constructed Caecm25?/? mutants and investigated the role of the gene in morphogenesis, cell wall organization and virulence. CaECM25 deletion resulted in defects in cell separation, a slower growth rate, reduced filamentous growth and attenuated adherence to plastic surfaces. The Caecm25?/? mutant was also significantly less virulent than wild type when tested for systemic infection in mice. Therefore, CaECM25 plays important roles in morphogenesis, cell wall organization and virulence.