Stable water isotopes are natural tracers quantifying the contribution of moisture recycling to local precipitation,i.e.,the moisture recycling ratio,but various isotope-based models usually lead to different results,...Stable water isotopes are natural tracers quantifying the contribution of moisture recycling to local precipitation,i.e.,the moisture recycling ratio,but various isotope-based models usually lead to different results,which affects the accuracy of local moisture recycling.In this study,a total of 18 stations from four typical areas in China were selected to compare the performance of isotope-based linear and Bayesian mixing models and to determine local moisture recycling ratio.Among the three vapor sources including advection,transpiration,and surface evaporation,the advection vapor usually played a dominant role,and the contribution of surface evaporation was less than that of transpiration.When the abnormal values were ignored,the arithmetic averages of differences between isotope-based linear and the Bayesian mixing models were 0.9%for transpiration,0.2%for surface evaporation,and–1.1%for advection,respectively,and the medians were 0.5%,0.2%,and–0.8%,respectively.The importance of transpiration was slightly less for most cases when the Bayesian mixing model was applied,and the contribution of advection was relatively larger.The Bayesian mixing model was found to perform better in determining an efficient solution since linear model sometimes resulted in negative contribution ratios.Sensitivity test with two isotope scenarios indicated that the Bayesian model had a relatively low sensitivity to the changes in isotope input,and it was important to accurately estimate the isotopes in precipitation vapor.Generally,the Bayesian mixing model should be recommended instead of a linear model.The findings are useful for understanding the performance of isotope-based linear and Bayesian mixing models under various climate backgrounds.展开更多
Large numbers of basic transceiver stations,where the telecommunication room is one of the main components,comprise an important part of the telecommunication system.After earthquakes,considerable economic loss from t...Large numbers of basic transceiver stations,where the telecommunication room is one of the main components,comprise an important part of the telecommunication system.After earthquakes,considerable economic loss from telecommunication systems is often associated with seismic damage and functional loss of the telecommunication room.However,research related to this has been limited.In this study,shaking table tests were conducted for a full-scale typical telecommunication room,including a light-steel house and the necessary communication and power supply equipment.The tests not only focused on the seismic damage to all the structures but also considered the functions of the communication and power supply of the equipment.The interactions between these facilities and their effects on communication function were also investigated.Compared with the damage to structures,the interruption of the power supply due to earthquakes is a weak link.Finally,the damage indexes,together with their threshold values of different damage states for the communication and power supply equipment,were derived from the test results.The results of this research can contribute to the literature gaps regarding seismic performance studies of telecommunication rooms,and can serve as a valuable reference for future research on its seismic fragility and economic losses evaluation.展开更多
基金This study was supported by the National Natural Science Foundation of China(42261008,41971034)the Natural Science Foundation of Gansu Province,China(22JR5RA074).
文摘Stable water isotopes are natural tracers quantifying the contribution of moisture recycling to local precipitation,i.e.,the moisture recycling ratio,but various isotope-based models usually lead to different results,which affects the accuracy of local moisture recycling.In this study,a total of 18 stations from four typical areas in China were selected to compare the performance of isotope-based linear and Bayesian mixing models and to determine local moisture recycling ratio.Among the three vapor sources including advection,transpiration,and surface evaporation,the advection vapor usually played a dominant role,and the contribution of surface evaporation was less than that of transpiration.When the abnormal values were ignored,the arithmetic averages of differences between isotope-based linear and the Bayesian mixing models were 0.9%for transpiration,0.2%for surface evaporation,and–1.1%for advection,respectively,and the medians were 0.5%,0.2%,and–0.8%,respectively.The importance of transpiration was slightly less for most cases when the Bayesian mixing model was applied,and the contribution of advection was relatively larger.The Bayesian mixing model was found to perform better in determining an efficient solution since linear model sometimes resulted in negative contribution ratios.Sensitivity test with two isotope scenarios indicated that the Bayesian model had a relatively low sensitivity to the changes in isotope input,and it was important to accurately estimate the isotopes in precipitation vapor.Generally,the Bayesian mixing model should be recommended instead of a linear model.The findings are useful for understanding the performance of isotope-based linear and Bayesian mixing models under various climate backgrounds.
基金Key Project of the Key Laboratory of Earthquake Engineering and Engineering Vibration,China Earthquake Administration under Grant Nos.2020EEEVL0502 and 2019EEEVL0304。
文摘Large numbers of basic transceiver stations,where the telecommunication room is one of the main components,comprise an important part of the telecommunication system.After earthquakes,considerable economic loss from telecommunication systems is often associated with seismic damage and functional loss of the telecommunication room.However,research related to this has been limited.In this study,shaking table tests were conducted for a full-scale typical telecommunication room,including a light-steel house and the necessary communication and power supply equipment.The tests not only focused on the seismic damage to all the structures but also considered the functions of the communication and power supply of the equipment.The interactions between these facilities and their effects on communication function were also investigated.Compared with the damage to structures,the interruption of the power supply due to earthquakes is a weak link.Finally,the damage indexes,together with their threshold values of different damage states for the communication and power supply equipment,were derived from the test results.The results of this research can contribute to the literature gaps regarding seismic performance studies of telecommunication rooms,and can serve as a valuable reference for future research on its seismic fragility and economic losses evaluation.