Multimedia streaming served through peer-to-peer (P2P) networks is booming nowadays. However, the end-to-end streaming quality is generally unstable due to the variability of the state of serve-peers. On the other han...Multimedia streaming served through peer-to-peer (P2P) networks is booming nowadays. However, the end-to-end streaming quality is generally unstable due to the variability of the state of serve-peers. On the other hand, proxy caching is a bandwidth-efficient scheme for streaming over the Internet, whereas it is a substantially expensive method needing dedicated powerful proxy servers. In this paper, we present a P2P cooperative streaming architecture combined with the advantages of both P2P networks and multimedia proxy caching techniques to improve the streaming quality of participating clients. In this frame- work, a client will simultaneously retrieve contents from the server and other peers that have viewed and cached the same title before. In the meantime, the client will also selectively cache the aggregated video content so as to serve still future clients. The associate protocol to facilitate the multi-path streaming and a distributed utility-based partial caching scheme are detailedly dis- cussed. We demonstrate the effectiveness of this proposed architecture through extensive simulation experiments on large, Inter- net-like topologies.展开更多
基金Project (Nos. 90412012 and 60673160) supported by the NationalNatural Science Foundation of China
文摘Multimedia streaming served through peer-to-peer (P2P) networks is booming nowadays. However, the end-to-end streaming quality is generally unstable due to the variability of the state of serve-peers. On the other hand, proxy caching is a bandwidth-efficient scheme for streaming over the Internet, whereas it is a substantially expensive method needing dedicated powerful proxy servers. In this paper, we present a P2P cooperative streaming architecture combined with the advantages of both P2P networks and multimedia proxy caching techniques to improve the streaming quality of participating clients. In this frame- work, a client will simultaneously retrieve contents from the server and other peers that have viewed and cached the same title before. In the meantime, the client will also selectively cache the aggregated video content so as to serve still future clients. The associate protocol to facilitate the multi-path streaming and a distributed utility-based partial caching scheme are detailedly dis- cussed. We demonstrate the effectiveness of this proposed architecture through extensive simulation experiments on large, Inter- net-like topologies.