Nanocrystalline Gd3Ga5O12:Eu3+ with cubic phase was prepared by a urea homogeneous precipitation method. X-ray diffraction (XRD), field emission scanning electron microscopy (SEM), Fourier transform infrared spectrosc...Nanocrystalline Gd3Ga5O12:Eu3+ with cubic phase was prepared by a urea homogeneous precipitation method. X-ray diffraction (XRD), field emission scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric and differential thermal analysis (TG-DTA) and photoluminescence spectra were used to characterize the samples. The effects of the initial solution pH value and urea content on the structure of the sample were studied. The XRD results show that pure phase Gd3Ga5O12 can be obtained at pH =6 and pH =8 of the initial solution. The average crystallite size can be calculated as in the range of 24~33 nm. The average crystallite size decreases with increasing molar ratio of urea to metal ion. The results of excitation spectra and emission spectra show that the emission peaks are ascribed to 5D0→7FJ transitions of Eu3+, and the magnetic dipole transition originated from 5D0 →7F1 of Eu3+ is the strongest; the broad excitation bands belong to change transfer band of Eu?O and the host absorption of Gd3Ga5O12. An efficient energy transfer occurs from Gd3+ to Eu3+.展开更多
Nanocrystalline Gd1.77Yb0.2Er0.03O3 samples were prepared by combustion and precipitation methods. Structures and upconversion luminescence properties of samples were studied. The results of XRD show that all samples ...Nanocrystalline Gd1.77Yb0.2Er0.03O3 samples were prepared by combustion and precipitation methods. Structures and upconversion luminescence properties of samples were studied. The results of XRD show that all samples are cubic structure, the average crystallite size could be calculated as 23 nm and 39 nm, respectively. The lattice constants were obtained. The FT-IR spectra were measured to investigate the vibrational feature of the samples. Upconversion luminescence spectra of samples under 980 nm laser excitation were investigated. The strong red emission of samples were observed, and attributed to 4F9/2→4I152 transitions of Er^3+ ions, the emission intensity for sample synthesized by precipitation method is stronger compared to that of combustion method. The possible upconversion luminescence mechanisms in nanocrystalline Gd1.77Yb0.2Er0.03O3 were discussed.展开更多
目的/意义识别领域研究前沿,辅助科学研究者有效遴选和追踪重点研究主题,助力科研管理决策者动态调整政策导向。方法/过程以Web of Science 2012—2022年37927条肿瘤学领域高影响力期刊文献题录和高被引文献题录为数据样本,运用BERTop...目的/意义识别领域研究前沿,辅助科学研究者有效遴选和追踪重点研究主题,助力科研管理决策者动态调整政策导向。方法/过程以Web of Science 2012—2022年37927条肿瘤学领域高影响力期刊文献题录和高被引文献题录为数据样本,运用BERTop提取主题,构建多维指标研究前沿识别模型,从多维度识别领域内不同类型的研究前沿。结果/结论所构建模型识别出肿瘤学领域热点研究前沿主题9个、新兴研究前沿主题14个、潜在研究前沿主题13个和衰退研究主题1个,具有有效性。展开更多
交通运输行业碳排放达峰是一项长期的自然演变过程。为研究中国交通运输行业碳达峰进程,本文首先采用国际类比法,选取国外典型国家,对比国家总体碳排放量、交通运输行业碳排放量以及换算周转量三者峰值出现的时间,分析交通运输行业碳排...交通运输行业碳排放达峰是一项长期的自然演变过程。为研究中国交通运输行业碳达峰进程,本文首先采用国际类比法,选取国外典型国家,对比国家总体碳排放量、交通运输行业碳排放量以及换算周转量三者峰值出现的时间,分析交通运输行业碳排放的自然达峰特征,结合交通需求预测,预判中国交通运输行业碳排放自然达峰时间。然后,引入单位换算周转量碳排放量、铁路公路货运比等核心影响因素,构建交通运输碳排放STIRPAT(Stochastic Impacts by Regression on Population, Affluence, and Technology)预测模型。最后,通过类比分析与模型预测,得到中国交通运输行业碳达峰时间及峰值排放量。国际类比结果表明:交通运输行业碳达峰与国家碳达峰之间没有明确的因果关系,但与换算周转量达峰紧密相关,交通运输行业碳排放达峰时换算周转量达峰或接近峰值;预测中国换算周转量在2048年左右达到26万亿吨公里的平台期,从国际类比的角度判断,中国交通运输行业实现碳排放自然达峰时间约在2040—2043年。STIRPAT模型显示:城镇化率、人均GDP、单位换算周转量碳排放量、铁路公路货运比每增加1%,中国交通运输行业碳排放量将分别增加1.201%、0.259%、0.454%、-0.389%。基于国际类比与STIRPAT模型组合预测判断,中国交通运输行业将在2038—2040年实现碳排放达峰,峰值排放量约为13亿t。展开更多
基金financially supported by the Science and Technology Research Project of Department of Education of Liaoning Province,China(No.L2011063)
文摘Nanocrystalline Gd3Ga5O12:Eu3+ with cubic phase was prepared by a urea homogeneous precipitation method. X-ray diffraction (XRD), field emission scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric and differential thermal analysis (TG-DTA) and photoluminescence spectra were used to characterize the samples. The effects of the initial solution pH value and urea content on the structure of the sample were studied. The XRD results show that pure phase Gd3Ga5O12 can be obtained at pH =6 and pH =8 of the initial solution. The average crystallite size can be calculated as in the range of 24~33 nm. The average crystallite size decreases with increasing molar ratio of urea to metal ion. The results of excitation spectra and emission spectra show that the emission peaks are ascribed to 5D0→7FJ transitions of Eu3+, and the magnetic dipole transition originated from 5D0 →7F1 of Eu3+ is the strongest; the broad excitation bands belong to change transfer band of Eu?O and the host absorption of Gd3Ga5O12. An efficient energy transfer occurs from Gd3+ to Eu3+.
基金the Foundation for University by Educational Department of Liaoning(No.05L337)
文摘Nanocrystalline Gd1.77Yb0.2Er0.03O3 samples were prepared by combustion and precipitation methods. Structures and upconversion luminescence properties of samples were studied. The results of XRD show that all samples are cubic structure, the average crystallite size could be calculated as 23 nm and 39 nm, respectively. The lattice constants were obtained. The FT-IR spectra were measured to investigate the vibrational feature of the samples. Upconversion luminescence spectra of samples under 980 nm laser excitation were investigated. The strong red emission of samples were observed, and attributed to 4F9/2→4I152 transitions of Er^3+ ions, the emission intensity for sample synthesized by precipitation method is stronger compared to that of combustion method. The possible upconversion luminescence mechanisms in nanocrystalline Gd1.77Yb0.2Er0.03O3 were discussed.
文摘目的/意义识别领域研究前沿,辅助科学研究者有效遴选和追踪重点研究主题,助力科研管理决策者动态调整政策导向。方法/过程以Web of Science 2012—2022年37927条肿瘤学领域高影响力期刊文献题录和高被引文献题录为数据样本,运用BERTop提取主题,构建多维指标研究前沿识别模型,从多维度识别领域内不同类型的研究前沿。结果/结论所构建模型识别出肿瘤学领域热点研究前沿主题9个、新兴研究前沿主题14个、潜在研究前沿主题13个和衰退研究主题1个,具有有效性。
文摘交通运输行业碳排放达峰是一项长期的自然演变过程。为研究中国交通运输行业碳达峰进程,本文首先采用国际类比法,选取国外典型国家,对比国家总体碳排放量、交通运输行业碳排放量以及换算周转量三者峰值出现的时间,分析交通运输行业碳排放的自然达峰特征,结合交通需求预测,预判中国交通运输行业碳排放自然达峰时间。然后,引入单位换算周转量碳排放量、铁路公路货运比等核心影响因素,构建交通运输碳排放STIRPAT(Stochastic Impacts by Regression on Population, Affluence, and Technology)预测模型。最后,通过类比分析与模型预测,得到中国交通运输行业碳达峰时间及峰值排放量。国际类比结果表明:交通运输行业碳达峰与国家碳达峰之间没有明确的因果关系,但与换算周转量达峰紧密相关,交通运输行业碳排放达峰时换算周转量达峰或接近峰值;预测中国换算周转量在2048年左右达到26万亿吨公里的平台期,从国际类比的角度判断,中国交通运输行业实现碳排放自然达峰时间约在2040—2043年。STIRPAT模型显示:城镇化率、人均GDP、单位换算周转量碳排放量、铁路公路货运比每增加1%,中国交通运输行业碳排放量将分别增加1.201%、0.259%、0.454%、-0.389%。基于国际类比与STIRPAT模型组合预测判断,中国交通运输行业将在2038—2040年实现碳排放达峰,峰值排放量约为13亿t。