The coupling factor is used in this study to characterise the combined effect of the heat transfer and resistance characteristics of a rifled tube. Boundary layer theory is utilised to investigate the relationship bet...The coupling factor is used in this study to characterise the combined effect of the heat transfer and resistance characteristics of a rifled tube. Boundary layer theory is utilised to investigate the relationship between the comprehensive coefficient and Reynolds number in two regions, namely, higher and lower than pseudo-critical enthalpy. Results indicate that mass flux exerts a decisive negative influence on the coupling effect, and the impacts of pressure and heat flux are weak. The overall effect decreases rapidly as the mass flux increases, but it increases in the area behind the quasi-critical enthalpy. The coupling effect is also affected by specific heat ratio, thermal acceleration and buoyancy. The correlations of heat transfer and friction resistance are deduced with high precision according to experimental data.展开更多
The migration characteristics of heavy metals in co-combustion of sewage sludge and high alkali coal in circulating fluidized bed were studied by experiments and simulations. Temperature plays a crucial role in thermo...The migration characteristics of heavy metals in co-combustion of sewage sludge and high alkali coal in circulating fluidized bed were studied by experiments and simulations. Temperature plays a crucial role in thermodynamic equilibrium distribution and migration characteristics of heavy metals. At the temperature range of 700℃-1200℃, Hg is completely gaseous and the proportion of Pb, Ni, and Cd in the gas phase is also high. As is mainly elemental in the system, and the proportion of Cr in the solid phase is large. Zn compounds are diverse and mostly solid materials. The volatility of Cu is not strong, and it will become gaseous when the temperature exceeds 1700℃. The proportion of heavy metals in the gas phase decreases as the excess air ratio increases. In an oxygen-rich atmosphere, most of Zn and Ni are converted to oxides;Pb and Cd are converted to crystalline silicate;Cu is converted to partial aluminate;Cr compound is decomposed to form Cr_(2)O_(3);they are good for the solidification and controlling of heavy metals. The elemental Hg is converted to HgCl_(2) and the elemental As is converted to AsCl_(3). Temperature also has a great influence on the volatilization rate of heavy metals. The higher the temperature, the shorter the time they reach the maximum volatility.展开更多
基金financially supported by the National Key Research & Development Program of China (No. 2016YFB0600201)
文摘The coupling factor is used in this study to characterise the combined effect of the heat transfer and resistance characteristics of a rifled tube. Boundary layer theory is utilised to investigate the relationship between the comprehensive coefficient and Reynolds number in two regions, namely, higher and lower than pseudo-critical enthalpy. Results indicate that mass flux exerts a decisive negative influence on the coupling effect, and the impacts of pressure and heat flux are weak. The overall effect decreases rapidly as the mass flux increases, but it increases in the area behind the quasi-critical enthalpy. The coupling effect is also affected by specific heat ratio, thermal acceleration and buoyancy. The correlations of heat transfer and friction resistance are deduced with high precision according to experimental data.
基金supported by the National Natural Science Foundation of China(No.52076172)。
文摘The migration characteristics of heavy metals in co-combustion of sewage sludge and high alkali coal in circulating fluidized bed were studied by experiments and simulations. Temperature plays a crucial role in thermodynamic equilibrium distribution and migration characteristics of heavy metals. At the temperature range of 700℃-1200℃, Hg is completely gaseous and the proportion of Pb, Ni, and Cd in the gas phase is also high. As is mainly elemental in the system, and the proportion of Cr in the solid phase is large. Zn compounds are diverse and mostly solid materials. The volatility of Cu is not strong, and it will become gaseous when the temperature exceeds 1700℃. The proportion of heavy metals in the gas phase decreases as the excess air ratio increases. In an oxygen-rich atmosphere, most of Zn and Ni are converted to oxides;Pb and Cd are converted to crystalline silicate;Cu is converted to partial aluminate;Cr compound is decomposed to form Cr_(2)O_(3);they are good for the solidification and controlling of heavy metals. The elemental Hg is converted to HgCl_(2) and the elemental As is converted to AsCl_(3). Temperature also has a great influence on the volatilization rate of heavy metals. The higher the temperature, the shorter the time they reach the maximum volatility.