The China-Myanmar Economic Corridor(CMEC) is an important part of China's Belt and Road Initiative and an important area for global ecology and biodiversity. In this study, the annual and seasonal spatiotemporal p...The China-Myanmar Economic Corridor(CMEC) is an important part of China's Belt and Road Initiative and an important area for global ecology and biodiversity. In this study, the annual and seasonal spatiotemporal patterns of temperature and precipitation in the CMEC over the past century were investigated using linear tendency estimation, the Mann-Kendall mutation test, the T-test, and wavelet analysis based on the monthly mean climatic data from 1901 to 2018 released by the Climatic Research Unit(CRU) of the University of East Anglia, UK. The results show that the CMEC demonstrated a trend of warming and drying over the past 100 years, and the rate of change in Myanmar was stronger than that in Yunnan Province of China. The warming rate was 0.039 ℃/10a. Precipitation decreased at a rate of -6.1 mm/10a. From the perspective of spatial distribution, temperature was high in the central and southern, low in the north of the CMEC, and the high-temperature centers were mainly distributed in the southern plain and river valley. Precipitation decreased from west to east and from south to north of the CMEC. From the perspective of the rate of change, warming was stronger in central and northern CMEC than in southern and northeastern CMEC. The rate of precipitation decline was stronger in the central and western regions than in the eastern region. This study provides a scientific reference for the CMEC to address climate change and ensure sustainable social and economic development and ecological security.展开更多
Satellite-based precipitation products have been widely used to estimate precipitation, especially over regions with sparse rain gauge networks. However, the low spatial resolution of these products has limited their ...Satellite-based precipitation products have been widely used to estimate precipitation, especially over regions with sparse rain gauge networks. However, the low spatial resolution of these products has limited their application in localized regions and watersheds.This study investigated a spatial downscaling approach, Geographically Weighted Regression Kriging(GWRK), to downscale the Tropical Rainfall Measuring Mission(TRMM) 3 B43 Version 7 over the Lancang River Basin(LRB) for 2001–2015. Downscaling was performed based on the relationships between the TRMM precipitation and the Normalized Difference Vegetation Index(NDVI), the Land Surface Temperature(LST), and the Digital Elevation Model(DEM). Geographical ratio analysis(GRA) was used to calibrate the annual downscaled precipitation data, and the monthly fractions derived from the original TRMM data were used to disaggregate annual downscaled and calibrated precipitation to monthly precipitation at 1 km resolution. The final downscaled precipitation datasets were validated against station-based observed precipitation in 2001–2015. Results showed that: 1) The TRMM 3 B43 precipitation was highly accurate with slight overestimation at the basin scale(i.e., CC(correlation coefficient) = 0.91, Bias = 13.3%). Spatially, the accuracies of the upstream and downstream regions were higher than that of the midstream region. 2) The annual downscaled TRMM precipitation data at 1 km spatial resolution obtained by GWRK effectively captured the high spatial variability of precipitation over the LRB. 3) The annual downscaled TRMM precipitation with GRA calibration gave better accuracy compared with the original TRMM dataset. 4) The final downscaled and calibrated precipitation had significantly improved spatial resolution, and agreed well with data from the validated rain gauge stations, i.e., CC = 0.75, RMSE(root mean square error) = 182 mm, MAE(mean absolute error) = 142 mm, and Bias = 0.78%for annual precipitation and CC = 0.95, RMSE = 25 mm, MAE = 16 mm, and Bias = 0.67% for monthly precipitation.展开更多
基金funded by the Natural Science Foundation of China (Grant No. 42271030)Fujian Provincial Funds for Distinguished Young Scientists (Grant No. 2022J06018)Applied Basic Research Programs of Yunnan province (Grant No. 202001BB050073)。
文摘The China-Myanmar Economic Corridor(CMEC) is an important part of China's Belt and Road Initiative and an important area for global ecology and biodiversity. In this study, the annual and seasonal spatiotemporal patterns of temperature and precipitation in the CMEC over the past century were investigated using linear tendency estimation, the Mann-Kendall mutation test, the T-test, and wavelet analysis based on the monthly mean climatic data from 1901 to 2018 released by the Climatic Research Unit(CRU) of the University of East Anglia, UK. The results show that the CMEC demonstrated a trend of warming and drying over the past 100 years, and the rate of change in Myanmar was stronger than that in Yunnan Province of China. The warming rate was 0.039 ℃/10a. Precipitation decreased at a rate of -6.1 mm/10a. From the perspective of spatial distribution, temperature was high in the central and southern, low in the north of the CMEC, and the high-temperature centers were mainly distributed in the southern plain and river valley. Precipitation decreased from west to east and from south to north of the CMEC. From the perspective of the rate of change, warming was stronger in central and northern CMEC than in southern and northeastern CMEC. The rate of precipitation decline was stronger in the central and western regions than in the eastern region. This study provides a scientific reference for the CMEC to address climate change and ensure sustainable social and economic development and ecological security.
基金Under the auspices of the National Natural Science Foundation of China(No.41661099)the National Key Research and Development Program of China(No.Grant 2016YFA0601601)
文摘Satellite-based precipitation products have been widely used to estimate precipitation, especially over regions with sparse rain gauge networks. However, the low spatial resolution of these products has limited their application in localized regions and watersheds.This study investigated a spatial downscaling approach, Geographically Weighted Regression Kriging(GWRK), to downscale the Tropical Rainfall Measuring Mission(TRMM) 3 B43 Version 7 over the Lancang River Basin(LRB) for 2001–2015. Downscaling was performed based on the relationships between the TRMM precipitation and the Normalized Difference Vegetation Index(NDVI), the Land Surface Temperature(LST), and the Digital Elevation Model(DEM). Geographical ratio analysis(GRA) was used to calibrate the annual downscaled precipitation data, and the monthly fractions derived from the original TRMM data were used to disaggregate annual downscaled and calibrated precipitation to monthly precipitation at 1 km resolution. The final downscaled precipitation datasets were validated against station-based observed precipitation in 2001–2015. Results showed that: 1) The TRMM 3 B43 precipitation was highly accurate with slight overestimation at the basin scale(i.e., CC(correlation coefficient) = 0.91, Bias = 13.3%). Spatially, the accuracies of the upstream and downstream regions were higher than that of the midstream region. 2) The annual downscaled TRMM precipitation data at 1 km spatial resolution obtained by GWRK effectively captured the high spatial variability of precipitation over the LRB. 3) The annual downscaled TRMM precipitation with GRA calibration gave better accuracy compared with the original TRMM dataset. 4) The final downscaled and calibrated precipitation had significantly improved spatial resolution, and agreed well with data from the validated rain gauge stations, i.e., CC = 0.75, RMSE(root mean square error) = 182 mm, MAE(mean absolute error) = 142 mm, and Bias = 0.78%for annual precipitation and CC = 0.95, RMSE = 25 mm, MAE = 16 mm, and Bias = 0.67% for monthly precipitation.