We theoretically and experimentally study the relationship between Fermi resonance and solvent effects and investigate the Fermi resonance of p-benzoquinone and cyclopentanone in different solvents and the Fermi reson...We theoretically and experimentally study the relationship between Fermi resonance and solvent effects and investigate the Fermi resonance of p-benzoquinone and cyclopentanone in different solvents and the Fermi resonance of CS_(2)in C_(6)H_(6)at different concentrations.Also,we investigate the Fermi resonance of C_(6)H_(6)and CCl_(4)in their solution at different pressures.It is found that solvent effects can be utilized to search Fermi resonance parameters such as coupling coefficient and spectral intensity ratio,etc.,on the other hand,the mechanism of solvent effects can be revealed according to Fermi resonance at high pressure.展开更多
We have determined the Raman scattering cross sections(RSCSs) of fl-carotene for C=C and C-C stretching modes, with the 1444 cm^-1 Raman band of cyclohexane as internal standard, in different solvents at low concent...We have determined the Raman scattering cross sections(RSCSs) of fl-carotene for C=C and C-C stretching modes, with the 1444 cm^-1 Raman band of cyclohexane as internal standard, in different solvents at low concentrations by measuring Raman intensity. The results show that RSCSs of β-carotene were 10^6-10^7 times larger than the general RSCSs, we analyzed that this enhancement was caused not only by the resonance Raman effect but also by nonlinear coherent CC vibration in aqueous β-carotene. Moreover, overtone and combinations of it were also observed and their intensities were 10%-20% of those of their fundamentals when β-carotene was dissolved in non-polar solvents, respectively.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 10774057 and 10974067.
文摘We theoretically and experimentally study the relationship between Fermi resonance and solvent effects and investigate the Fermi resonance of p-benzoquinone and cyclopentanone in different solvents and the Fermi resonance of CS_(2)in C_(6)H_(6)at different concentrations.Also,we investigate the Fermi resonance of C_(6)H_(6)and CCl_(4)in their solution at different pressures.It is found that solvent effects can be utilized to search Fermi resonance parameters such as coupling coefficient and spectral intensity ratio,etc.,on the other hand,the mechanism of solvent effects can be revealed according to Fermi resonance at high pressure.
基金Supported by the National Natural Science Foundation of China(No.10774057)the Foundation of Jilin Provincial Science & Technology Department,China(No.20090534)the Opened Fund of State Key Laboratory of Integrated Optoelectronics, China(No.IOSKL-KF200908)
文摘We have determined the Raman scattering cross sections(RSCSs) of fl-carotene for C=C and C-C stretching modes, with the 1444 cm^-1 Raman band of cyclohexane as internal standard, in different solvents at low concentrations by measuring Raman intensity. The results show that RSCSs of β-carotene were 10^6-10^7 times larger than the general RSCSs, we analyzed that this enhancement was caused not only by the resonance Raman effect but also by nonlinear coherent CC vibration in aqueous β-carotene. Moreover, overtone and combinations of it were also observed and their intensities were 10%-20% of those of their fundamentals when β-carotene was dissolved in non-polar solvents, respectively.