Background:Cotton production in China is challenged by high labor input including manual topping(MT).Recently,to replace MT in the Xinjiang cotton region of China,mepiquat chloride(MC)was applied once more than the tr...Background:Cotton production in China is challenged by high labor input including manual topping(MT).Recently,to replace MT in the Xinjiang cotton region of China,mepiquat chloride(MC)was applied once more than the traditional multiple-application;this was designated as chemical topping(CT),but it is unclear whether the amount of irrigation needs to be adjusted to accommodate CT.Results:The main plots were assigned to three drip irrigation amounts[300(I_(1))480(I_(2)), and 660(I_(3))mm],and the subplots were assigned to the CT treatments[450(MC)750(MC_(2)),and 1050(MC_(3))mL·hm^(-2)25%MC]with MT as a control that was performed after early bloom.The optimum drip irrigation amount for CT was explored based on leaf photosynthesis,chlorophyll fluorescence,biomass accumulation,and yield.There were significant influe nces of drip irrigation,topping treatme nts and their interaction on chlorophyll fluorescence characteristics,gas exchange parameters and biomass accumulation characteristics as well as yield.The combination of I_(2) and MC_(2)(I_(2)MC_(2))performed best.Compared with I_(2)MC_(2)the net photosynthetic rate(Pn),stomatai conductance(Gs),transpiration rate(Tr),and photochemical quenching coefficient(qP)of I_(2)MC_(2)significantly increased by 4.0%~7.2%,6.8%〜17.1%,5.2%~17.6%,and 4.8%~9.6%,respectively,from the peak flowering to boll opening stages.Moreover,I_(2)MC_(2) showed fast reproductive organ biomass accumulation and the highest seed cotton yield;the latter was 6.6%~12.8%higher than that of I_(2)MT.Further analysis revealed that a 25%MC emulsion in water(MCEW)application resulted in yield improvement by increasing Pn,φPSⅡ,and qP to promote biomass accumulation and transport to reproductive organs.Conclusion:The results showed that the 480 mm drip irrigation combined with 750 mL·hm^(-2)MC increased the rate of dry matter accumulation in reproductive organs by increasing Pn,φPSⅡ and qP to improve photosynthetic performance,thus achieving higher yield.展开更多
Background:Manual topping is a routine agronomic practice for balancing the vegetative and reproductive growth of cotton(Gossypium hirsutum)in China,but its cost-effectiveness has decreased over time.Therefore,there i...Background:Manual topping is a routine agronomic practice for balancing the vegetative and reproductive growth of cotton(Gossypium hirsutum)in China,but its cost-effectiveness has decreased over time.Therefore,there is an urgent need to replace manual topping with new approaches,such as biological topping.In this study,we examined the function of Gh REV transcription factors(a classⅢhomeodomain-leucine zipper family,HD-ZIPⅢ)in regulating the development of shoot apical meristem(SAM)in cotton with the purpose of providing candidate genes for biological topping of cotton in the future.Results:We cloned four orthologous genes of At REV in cotton,namely Gh REV1,Gh REV2,Gh REV3,and Gh REV4.All the Gh REVs expressed in roots,stem,leaves,and SAM.Compared with Gh REV1 and Gh REV3,the expression level of Gh REV2 and Gh REV4 was higher in the SAM.However,only Gh REV2 had transcriptional activity.Gh REV2 is localized in the nucleus;and silencing it via virus-induced gene silencing(VIGS)produced an abnormal SAM.Two key genes,Gh WUSA10 and Gh STM,which involved in regulating the development of plant SAM,showed about 50%reduction in their transcripts in VIGS-Gh REV2 plants.Conclusion:Gh REV2 positively regulates the development of cotton SAM by regulating Gh WUSA10 and Gh STM potentially.展开更多
In the original publication of this article(Yang et al.2020)the name of the forth author is incorrect.The correct name of the forth author should be ENEJI A.Egrinya rather than ENEJI A.Agrinya The original publication...In the original publication of this article(Yang et al.2020)the name of the forth author is incorrect.The correct name of the forth author should be ENEJI A.Egrinya rather than ENEJI A.Agrinya The original publication has been corrected.展开更多
With the development in spinning technology, the improvement of cotton fiber quality is becoming more and more important. The main objective of this research was to construct a high-density genetic linkage map to faci...With the development in spinning technology, the improvement of cotton fiber quality is becoming more and more important. The main objective of this research was to construct a high-density genetic linkage map to facilitate marker assisted selection for fiber quality traits in upland cotton (Gossypium hirsutum L.). A genetic linkage map comprising 421 loci and covering 3814.3 cM, accounting for approximately 73.35% of the cotton genome, was constructed using an F2 population derived from cross GX1135 (P 1 )×GX100-2 (P 2 ). Forty-four of 49 linkage groups were assigned to the 26 chromosomes. Fiber quality traits were investigated in F2 population sampled from individuals, and in F2:3 , and F2:4 generations sampled by lines from two sites and one respectively, and each followed a randomized complete block design with two replications. Thirty-nine quantitative trait loci were detected for five fiber quality traits with data from single environments (separate analysis each): 12 for fiber length, five for fiber uniformity, nine for fiber strength, seven for fiber elongation, and six for fiber micronaire, whereas 15 QTLs were found in combined analysis (data from means of different environments in F2:3 generation). Among these QTLs, qFL-chr5-2 and qFL-chr14-2 for fiber length were detected simultaneously in three generations (four environments) and verified further by combined analysis, and these QTLs should be useful for marker assisted selection to improve fiber quality in upland cotton.展开更多
基金financially supported by the Research Fund for the National Natural Science Foundation of China (31760369)Xinjiang Corps Science and Technology Innovation Talent Program (2020CB014)Major projects of the eighth Division (2020ZD01)
文摘Background:Cotton production in China is challenged by high labor input including manual topping(MT).Recently,to replace MT in the Xinjiang cotton region of China,mepiquat chloride(MC)was applied once more than the traditional multiple-application;this was designated as chemical topping(CT),but it is unclear whether the amount of irrigation needs to be adjusted to accommodate CT.Results:The main plots were assigned to three drip irrigation amounts[300(I_(1))480(I_(2)), and 660(I_(3))mm],and the subplots were assigned to the CT treatments[450(MC)750(MC_(2)),and 1050(MC_(3))mL·hm^(-2)25%MC]with MT as a control that was performed after early bloom.The optimum drip irrigation amount for CT was explored based on leaf photosynthesis,chlorophyll fluorescence,biomass accumulation,and yield.There were significant influe nces of drip irrigation,topping treatme nts and their interaction on chlorophyll fluorescence characteristics,gas exchange parameters and biomass accumulation characteristics as well as yield.The combination of I_(2) and MC_(2)(I_(2)MC_(2))performed best.Compared with I_(2)MC_(2)the net photosynthetic rate(Pn),stomatai conductance(Gs),transpiration rate(Tr),and photochemical quenching coefficient(qP)of I_(2)MC_(2)significantly increased by 4.0%~7.2%,6.8%〜17.1%,5.2%~17.6%,and 4.8%~9.6%,respectively,from the peak flowering to boll opening stages.Moreover,I_(2)MC_(2) showed fast reproductive organ biomass accumulation and the highest seed cotton yield;the latter was 6.6%~12.8%higher than that of I_(2)MT.Further analysis revealed that a 25%MC emulsion in water(MCEW)application resulted in yield improvement by increasing Pn,φPSⅡ,and qP to promote biomass accumulation and transport to reproductive organs.Conclusion:The results showed that the 480 mm drip irrigation combined with 750 mL·hm^(-2)MC increased the rate of dry matter accumulation in reproductive organs by increasing Pn,φPSⅡ and qP to improve photosynthetic performance,thus achieving higher yield.
基金supported by The National Natural Science Foundation of China(31571588)。
文摘Background:Manual topping is a routine agronomic practice for balancing the vegetative and reproductive growth of cotton(Gossypium hirsutum)in China,but its cost-effectiveness has decreased over time.Therefore,there is an urgent need to replace manual topping with new approaches,such as biological topping.In this study,we examined the function of Gh REV transcription factors(a classⅢhomeodomain-leucine zipper family,HD-ZIPⅢ)in regulating the development of shoot apical meristem(SAM)in cotton with the purpose of providing candidate genes for biological topping of cotton in the future.Results:We cloned four orthologous genes of At REV in cotton,namely Gh REV1,Gh REV2,Gh REV3,and Gh REV4.All the Gh REVs expressed in roots,stem,leaves,and SAM.Compared with Gh REV1 and Gh REV3,the expression level of Gh REV2 and Gh REV4 was higher in the SAM.However,only Gh REV2 had transcriptional activity.Gh REV2 is localized in the nucleus;and silencing it via virus-induced gene silencing(VIGS)produced an abnormal SAM.Two key genes,Gh WUSA10 and Gh STM,which involved in regulating the development of plant SAM,showed about 50%reduction in their transcripts in VIGS-Gh REV2 plants.Conclusion:Gh REV2 positively regulates the development of cotton SAM by regulating Gh WUSA10 and Gh STM potentially.
文摘In the original publication of this article(Yang et al.2020)the name of the forth author is incorrect.The correct name of the forth author should be ENEJI A.Egrinya rather than ENEJI A.Agrinya The original publication has been corrected.
基金supported by a grant from the National High Technology Research and Development Program (2011AA10A102)in part by the National Natural Science Foundation of China (31171591)a grant from the New Century Excellent Talents of the Ministry of Education(NCET-06-0106) to J HUA
文摘With the development in spinning technology, the improvement of cotton fiber quality is becoming more and more important. The main objective of this research was to construct a high-density genetic linkage map to facilitate marker assisted selection for fiber quality traits in upland cotton (Gossypium hirsutum L.). A genetic linkage map comprising 421 loci and covering 3814.3 cM, accounting for approximately 73.35% of the cotton genome, was constructed using an F2 population derived from cross GX1135 (P 1 )×GX100-2 (P 2 ). Forty-four of 49 linkage groups were assigned to the 26 chromosomes. Fiber quality traits were investigated in F2 population sampled from individuals, and in F2:3 , and F2:4 generations sampled by lines from two sites and one respectively, and each followed a randomized complete block design with two replications. Thirty-nine quantitative trait loci were detected for five fiber quality traits with data from single environments (separate analysis each): 12 for fiber length, five for fiber uniformity, nine for fiber strength, seven for fiber elongation, and six for fiber micronaire, whereas 15 QTLs were found in combined analysis (data from means of different environments in F2:3 generation). Among these QTLs, qFL-chr5-2 and qFL-chr14-2 for fiber length were detected simultaneously in three generations (four environments) and verified further by combined analysis, and these QTLs should be useful for marker assisted selection to improve fiber quality in upland cotton.