Polymer matrix types of fiber hybrid composites are key factors to improve ballistic impact damage tolerances.Here we report ballistic penetration damages of Kevlar/ultra-high molecular weight polyethylene(UHMWPE)hybr...Polymer matrix types of fiber hybrid composites are key factors to improve ballistic impact damage tolerances.Here we report ballistic penetration damages of Kevlar/ultra-high molecular weight polyethylene(UHMWPE)hybrid composites with thermoplastic polyurethane(PU)matrix.The hybrid composites were penetrated by fragment-simulating projectiles(FSPs)using an air gun impact system.The effects of stacking sequences on the ballistic performance of hybrid composites were analyzed.Two types of specific energy absorption(the energy absorption per unit area density and the energy absorption per unit thickness)were investigated.It was found that the main damage modes of PU hybrid composites were fiber breakage,matrix damage,fiber pullout and interlayer delamination.The instantaneous deformation could not be used as a reference index for evaluating the ballistic performance of the target plate.The energy absorption process of the PU hybrid composites showed a nonlinear pattern.The hybrid structure affected the specific energy absorption of the materials.展开更多
The microbes associated with sponges play important roles in the nitrogen cycle of the coral reefs ecosystem,e.g.,nitrification,denitrification,and nitrogen fixation.However,the whole nitrogen-cycling network has rema...The microbes associated with sponges play important roles in the nitrogen cycle of the coral reefs ecosystem,e.g.,nitrification,denitrification,and nitrogen fixation.However,the whole nitrogen-cycling network has remained incomplete in any individual sponge holobiont.In this study,454 pyrosequencing of the 16S rRNA genes revealed that the sponge Spheciospongia vesparium from the South China Sea has a unique bacterial community(including 12 bacterial phyla),dominated particularly by the genus Shewanella(order Alteromonadales).A total of 10 functional genes,nifH,amoA,narG,napA,nirK,norB,nosZ,ureC,nrfA,and gltB,were detected in the microbiome of the sponge S.vesparium by gene-targeted analysis,revealing an almost complete nitrogen-cycling network in this sponge.Particularly,bacterial urea utilization and the whole denitrification pathway were highlighted.MEGAN analysis suggests that Proteobacteria(e.g.,Shewanella)and Bacteroidetes(e.g.,Bizionia)are probably involved in the nitrogen cycle in the sponge S.vesparium.展开更多
Magnetic signature of serpentinized mantle peridotite has crucial importance in understanding the serpentinization process and interpreting the origin of strong magnetization anomalies at ultramafic-hosted hydrotherma...Magnetic signature of serpentinized mantle peridotite has crucial importance in understanding the serpentinization process and interpreting the origin of strong magnetization anomalies at ultramafic-hosted hydrothermal settings. However, different groups of serpentinized peridotites from both ocean drillings and ophiolite complexes have shown considerable variations in the abundance of magnetite(Oufi et al., 2002;Bonnemains et al., 2016;Li et al., 2017). We examined the magnetic properties, petrography and mineral chemistry of variably serpentinized peridotites from Zedang ophiolite in the eastern Yarlung-Zangbo suture in south Tibet to evaluate the conditions of serpentinization and magnetite formation as well as magnetic sources in suture zones. The studied samples were 0–90% serpentinized with densities from 3.316 to 2.593 g cm–3 and show typical mesh textures of olivine replaced by serpentine on thin sections of core specimen. Serpentines were divided into type-1 Fe-poor serpentine mesh(1.84–2.88 wt% FeO) associated with magnetite in the early stage and type-2 Fe-rich serpentine cores(3.92–5.12 wt% FeO) with no formation of magnetite in the late serpentinization. Brucite vein appeared in central serpentine veins and show Mg/(Mg+Fe) values of 0.74–0.87 at ~50–70% of serpentinization. Pure magnetite was identified as the main magnetic carrier by thermomagnetic analyses, but minor Cr-magnetite(~0.8 mole fractions of Fe3O4) was also detected due to oxidation of early spinel. All the peridotite samples show a rapid increase of magnetic susceptibility from ~0.001 to ~0.03 SI before 40–50% of serpentinization and a following flat trend in values 0.02–0.03 SI at > 50% of serpentinization. This density-susceptibility relationship differs from the rapid production of magnetite above 60-70% of serpentinization for many abyssal peridotites(Oufi et al., 2002;Bach et al., 2006) and suggests that magnetite formation was coupled with hydration of olivine in the early serpentinization but the two decoupled at ~ 40–50% of serpentinization. This transition is consistent with the petrographic observation that magnetite-free serpentinization was developed in higher degrees(> 50%) of serpentinization. Prior studies suggested that serpentinization of < 200℃ would generate Fe-rich brucite, serpentine and little magnetite, whereas magnetite-rich serpentinization was associated with Fe-poor brucite and occurred at higher temperatures of 200–300℃(Klein et al., 2014). The petromagnetic features of serpentinized peridotites from the Zedang ophiolite indicate that the serpentinization process took place initially above 250℃(estimate from brucite composition) and continued to lower temperatures of < 200℃, probably during the mantle lithosphere cooling down in forearc settings(Xiong et al., 2017). These serpentinized peridotites have higher magnetization intensities(average 2.26 Am-1) than mafic dolerite dykes and basaltic volcanic rocks(mostly < 1 Am-1) and should be significant sources of aeromagnetic highs in the Yarlung-Zangbo suture.展开更多
基金National Natural Science Foundation of China(No.51875099)。
文摘Polymer matrix types of fiber hybrid composites are key factors to improve ballistic impact damage tolerances.Here we report ballistic penetration damages of Kevlar/ultra-high molecular weight polyethylene(UHMWPE)hybrid composites with thermoplastic polyurethane(PU)matrix.The hybrid composites were penetrated by fragment-simulating projectiles(FSPs)using an air gun impact system.The effects of stacking sequences on the ballistic performance of hybrid composites were analyzed.Two types of specific energy absorption(the energy absorption per unit area density and the energy absorption per unit thickness)were investigated.It was found that the main damage modes of PU hybrid composites were fiber breakage,matrix damage,fiber pullout and interlayer delamination.The instantaneous deformation could not be used as a reference index for evaluating the ballistic performance of the target plate.The energy absorption process of the PU hybrid composites showed a nonlinear pattern.The hybrid structure affected the specific energy absorption of the materials.
基金Financial support from the National Natural Science Foundation of China(NSFC)(Nos.31861143020,41776138)was used to conduct this research and is greatly appreciated.
文摘The microbes associated with sponges play important roles in the nitrogen cycle of the coral reefs ecosystem,e.g.,nitrification,denitrification,and nitrogen fixation.However,the whole nitrogen-cycling network has remained incomplete in any individual sponge holobiont.In this study,454 pyrosequencing of the 16S rRNA genes revealed that the sponge Spheciospongia vesparium from the South China Sea has a unique bacterial community(including 12 bacterial phyla),dominated particularly by the genus Shewanella(order Alteromonadales).A total of 10 functional genes,nifH,amoA,narG,napA,nirK,norB,nosZ,ureC,nrfA,and gltB,were detected in the microbiome of the sponge S.vesparium by gene-targeted analysis,revealing an almost complete nitrogen-cycling network in this sponge.Particularly,bacterial urea utilization and the whole denitrification pathway were highlighted.MEGAN analysis suggests that Proteobacteria(e.g.,Shewanella)and Bacteroidetes(e.g.,Bizionia)are probably involved in the nitrogen cycle in the sponge S.vesparium.
基金granted by the Fundamental Research Funds for the Central Universities (Grant No. CUG180620)the NSFC project (Grant No. 41520104003)
文摘Magnetic signature of serpentinized mantle peridotite has crucial importance in understanding the serpentinization process and interpreting the origin of strong magnetization anomalies at ultramafic-hosted hydrothermal settings. However, different groups of serpentinized peridotites from both ocean drillings and ophiolite complexes have shown considerable variations in the abundance of magnetite(Oufi et al., 2002;Bonnemains et al., 2016;Li et al., 2017). We examined the magnetic properties, petrography and mineral chemistry of variably serpentinized peridotites from Zedang ophiolite in the eastern Yarlung-Zangbo suture in south Tibet to evaluate the conditions of serpentinization and magnetite formation as well as magnetic sources in suture zones. The studied samples were 0–90% serpentinized with densities from 3.316 to 2.593 g cm–3 and show typical mesh textures of olivine replaced by serpentine on thin sections of core specimen. Serpentines were divided into type-1 Fe-poor serpentine mesh(1.84–2.88 wt% FeO) associated with magnetite in the early stage and type-2 Fe-rich serpentine cores(3.92–5.12 wt% FeO) with no formation of magnetite in the late serpentinization. Brucite vein appeared in central serpentine veins and show Mg/(Mg+Fe) values of 0.74–0.87 at ~50–70% of serpentinization. Pure magnetite was identified as the main magnetic carrier by thermomagnetic analyses, but minor Cr-magnetite(~0.8 mole fractions of Fe3O4) was also detected due to oxidation of early spinel. All the peridotite samples show a rapid increase of magnetic susceptibility from ~0.001 to ~0.03 SI before 40–50% of serpentinization and a following flat trend in values 0.02–0.03 SI at > 50% of serpentinization. This density-susceptibility relationship differs from the rapid production of magnetite above 60-70% of serpentinization for many abyssal peridotites(Oufi et al., 2002;Bach et al., 2006) and suggests that magnetite formation was coupled with hydration of olivine in the early serpentinization but the two decoupled at ~ 40–50% of serpentinization. This transition is consistent with the petrographic observation that magnetite-free serpentinization was developed in higher degrees(> 50%) of serpentinization. Prior studies suggested that serpentinization of < 200℃ would generate Fe-rich brucite, serpentine and little magnetite, whereas magnetite-rich serpentinization was associated with Fe-poor brucite and occurred at higher temperatures of 200–300℃(Klein et al., 2014). The petromagnetic features of serpentinized peridotites from the Zedang ophiolite indicate that the serpentinization process took place initially above 250℃(estimate from brucite composition) and continued to lower temperatures of < 200℃, probably during the mantle lithosphere cooling down in forearc settings(Xiong et al., 2017). These serpentinized peridotites have higher magnetization intensities(average 2.26 Am-1) than mafic dolerite dykes and basaltic volcanic rocks(mostly < 1 Am-1) and should be significant sources of aeromagnetic highs in the Yarlung-Zangbo suture.