The root-knot nematode Meloidogyne graminicola, which is distributed worldwide, is considered a major constraint on rice production in Asia. The present study used the root gall index and number of nematodes inside th...The root-knot nematode Meloidogyne graminicola, which is distributed worldwide, is considered a major constraint on rice production in Asia. The present study used the root gall index and number of nematodes inside the roots to evaluate resistance/susceptibility to M. graminicola in different subpopulations of Oryza sativa (aus, hybrid aus, indica, hybrid indica, temperate japonica, tropical japonica). Nematode development in highly resistant varieties was also evaluated. Analyses of randomly selected 35 varieties showed the number of M. graminicola nematodes inside the roots correlated very strongly (r=0.87, P≤0.05) with the nematode gall index, and the results from pot and field experiments revealed similar rankings of the varieties for resistance/susceptibility. Among the 136 tested varieties, temperate japonica displayed the highest gall index, followed by tropical japonica, indica, hybrid indica, aus, and hybrid aus. Zhonghua 11 (aus), Shenliangyou 1 (hybrid aus) and Cliangyou 4418 (hybrid indica) were highly resistant to M. graminicola under both pot and field conditions. Further examination of nematode development suggested that compared to susceptible rice, M. graminicola penetrated less often into highly resistant varieties and more frequently failed to develop into females. The promising varieties found in the present research might be useful for the breeding of hybrid rice in China and for the further development of practical nematode management measures.展开更多
The root-knot nematode Meloidogyne graminicola is considered one of the most devastating pests in rice-producing areas,and nematicides are neither ecofriendly nor cost effective.More acceptable biological agents are r...The root-knot nematode Meloidogyne graminicola is considered one of the most devastating pests in rice-producing areas,and nematicides are neither ecofriendly nor cost effective.More acceptable biological agents are required for controlling this destructive pathogen.In this study,the biocontrol potential of Aspergillus welwitschiae AW2017 was investigated in laboratory and greenhouse experiments.The in vitro ovicidal and larvicidal activities of A.welwitschiae metabolites were tested on M.graminicola in laboratory experiments.The effect of A.welwitschiae on the attraction of M.graminicola to rice and the infection of rice by M.graminicola was evaluated in a greenhouse.The bioagent AW2017 displayed good nematicidal potential via its ovicidal and larvicidal action.The best larvicidal activity was observed at a concentration of 5×AW2017,which caused an 86.2%mortality rate at 48 h post inoculation.The highest ovicidal activity was recorded at a concentration of 5×AW2017,which resulted in an approximately 47.3%reduction in egg hatching after 8 d compared to the control.Under greenhouse conditions,the application of A.welwitschiae significantly reduced the root galls and nematodes in rice roots compared to the control.At a concentration of 5×AW2017,juveniles and root galls in rice roots at 14 d post inoculation(dpi)were reduced by 24.5 and 40.5%,respectively.In addition,the attraction of M.graminicola to rice roots was significantly decreased in the AW2017 treatment,and the development of nematodes in the AW2017-treated plants was slightly delayed compared with that in the PDB-treated control plants.The results indicate that A.welwitschiae is a potential biological control agent against M.graminicola in rice.展开更多
基金supported by the grants from the National Natural Science Foundation of China (31571986)the National Basic Research Programme of China (2013CB127502)
文摘The root-knot nematode Meloidogyne graminicola, which is distributed worldwide, is considered a major constraint on rice production in Asia. The present study used the root gall index and number of nematodes inside the roots to evaluate resistance/susceptibility to M. graminicola in different subpopulations of Oryza sativa (aus, hybrid aus, indica, hybrid indica, temperate japonica, tropical japonica). Nematode development in highly resistant varieties was also evaluated. Analyses of randomly selected 35 varieties showed the number of M. graminicola nematodes inside the roots correlated very strongly (r=0.87, P≤0.05) with the nematode gall index, and the results from pot and field experiments revealed similar rankings of the varieties for resistance/susceptibility. Among the 136 tested varieties, temperate japonica displayed the highest gall index, followed by tropical japonica, indica, hybrid indica, aus, and hybrid aus. Zhonghua 11 (aus), Shenliangyou 1 (hybrid aus) and Cliangyou 4418 (hybrid indica) were highly resistant to M. graminicola under both pot and field conditions. Further examination of nematode development suggested that compared to susceptible rice, M. graminicola penetrated less often into highly resistant varieties and more frequently failed to develop into females. The promising varieties found in the present research might be useful for the breeding of hybrid rice in China and for the further development of practical nematode management measures.
基金financially supported by grants from the National Key Research and Development Program (2018YFD0201202 & 2017YFD0201102)the National Natural Science Foundation of China (31571986)
文摘The root-knot nematode Meloidogyne graminicola is considered one of the most devastating pests in rice-producing areas,and nematicides are neither ecofriendly nor cost effective.More acceptable biological agents are required for controlling this destructive pathogen.In this study,the biocontrol potential of Aspergillus welwitschiae AW2017 was investigated in laboratory and greenhouse experiments.The in vitro ovicidal and larvicidal activities of A.welwitschiae metabolites were tested on M.graminicola in laboratory experiments.The effect of A.welwitschiae on the attraction of M.graminicola to rice and the infection of rice by M.graminicola was evaluated in a greenhouse.The bioagent AW2017 displayed good nematicidal potential via its ovicidal and larvicidal action.The best larvicidal activity was observed at a concentration of 5×AW2017,which caused an 86.2%mortality rate at 48 h post inoculation.The highest ovicidal activity was recorded at a concentration of 5×AW2017,which resulted in an approximately 47.3%reduction in egg hatching after 8 d compared to the control.Under greenhouse conditions,the application of A.welwitschiae significantly reduced the root galls and nematodes in rice roots compared to the control.At a concentration of 5×AW2017,juveniles and root galls in rice roots at 14 d post inoculation(dpi)were reduced by 24.5 and 40.5%,respectively.In addition,the attraction of M.graminicola to rice roots was significantly decreased in the AW2017 treatment,and the development of nematodes in the AW2017-treated plants was slightly delayed compared with that in the PDB-treated control plants.The results indicate that A.welwitschiae is a potential biological control agent against M.graminicola in rice.