This project aims to attack the frontiers of electronic structure calculations on the excited states of large molecules and molecular aggregates by developing novel theoretical and computational methods. The methodolo...This project aims to attack the frontiers of electronic structure calculations on the excited states of large molecules and molecular aggregates by developing novel theoretical and computational methods. The methodology development is especially based on the time-dependent density functional theory (TDDFT) and valence bond (VB) theory, and is expected to be computationally effective and accurate as well. Research works on the following related subjects will be performed: (1) The analytical energy-derivative approaches for electronically excited state within TDDFT will be developed to reduce bypass the computational costs in the calculation of molecular excited-state properties. (2) The ab initio methods for electronically excited state based on VB theory and hybrid TDDFT-VB method will be developed to overcome the limitations of current TDDFT in simulating photophysics and photochemistry. (3) For larger aggregates, neither ab initio methods nor TDDFT is applicable. We intend to build the effective model Hamiltonian by developing novel theoretical and computational methods to calculate the involved microscopic physical parameters from the first-principles methods. The constructed effective Hamiltonian is then used to describe the excitonic states and excitonic dynamics of the natural or artificial photosynthesized systems, organic or inorganic photovoltaic cell. (4) The condensed phase environment is taken into account by combining the developed theories and algorithms based on TDDFT and VB with the polarizable continuum solvent models (PCM), molecular mechanism (MM), classical electrodynamics (ED) or molecular dynamics (MD) theory. (5) Highly efficient software packages will be designed and developed.展开更多
We present here a brief summary of a National Natural Science Foundation Major Project entitled "Theoretical study of the low-lying electronic excited state for molecular aggregates". The project focuses on ...We present here a brief summary of a National Natural Science Foundation Major Project entitled "Theoretical study of the low-lying electronic excited state for molecular aggregates". The project focuses on theoretical investigation of the electronic structures and dynamic processes upon photo-and electric-excitation for molecules and aggregates. We aim to develop reliable methodology to predict the optoelectronic properties of molecular materials related to the electronic excitations and to apply in the experiments. We identify two essential scientific challenges: (i) nature of intramolecular and intermolecular electronic excited states; (ii) theoretical description of the dynamic processes of the coupled motion of electronic excitations and nucleus. We propose the following four subjects of research: (i) linear scaling time-dependent density-functional theory and its application to open shell system; (ii) computational method development of electronic excited state for molecular aggregates; (iii) theoretical investigation of the time evolution of the excited state dynamics; (iv) methods to predict the optoelectronic properties starting from electronic excited state investigation for organic materials and experimental verifications.展开更多
Absorption and photoluminescence spectroscopies are useful tools to study the photo-physical properties of materials. The theoretical methods for calculation of the spectra of molecules/supermolecules and aggregates, ...Absorption and photoluminescence spectroscopies are useful tools to study the photo-physical properties of materials. The theoretical methods for calculation of the spectra of molecules/supermolecules and aggregates, whose structures can differ significantly, are reviewed from the viewpoint of computational efficiency. Several model compounds/multimers are taken as examples for the spectral calculations. The numerical results achieve a satisfactory agreement between the theory and experiment.展开更多
We review our recent work on the methodology development of the excited-state properties for the molecules in vacuum and liquid solution.The general algorithms of analytical energy derivatives for the specific propert...We review our recent work on the methodology development of the excited-state properties for the molecules in vacuum and liquid solution.The general algorithms of analytical energy derivatives for the specific properties such as the first and second geometrical derivatives and IR/Raman intensities are demonstrated in the framework of the time-dependent density functional theory(TDDFT).The performance of the analytical approaches on the calculation of excited-state energy Hessian has also been shown.It is found that the analytical approaches are superior to the finite-difference method on the computational accuracy and efficiency.The computational cost for a TDDFT excited-state Hessian calculation is only 2–3 times as that for the DFT ground-state Hessian calculation.With the low computational complexity of the developed analytical approaches,it becomes feasible to realize the large-scale numerical calculations on the excited-state vibrational frequencies,vibrational spectroscopies and the electronic-structure parameters which enter the spectrum calculations of electronic absorption and emission,and resonance Raman spectroscopies for medium-to large-sized systems.展开更多
The non-Condon effect plays an important role in the process of electron transfer (ET). Several theoretical models have been proposed to investigate its effect on ET rates. In this paper,we overview a theoretical meth...The non-Condon effect plays an important role in the process of electron transfer (ET). Several theoretical models have been proposed to investigate its effect on ET rates. In this paper,we overview a theoretical method for the calculations of the non-Condon ET rate constants proposed by us,and its applications to organic semiconductors. First,full quantum expressions of the non-Condon ET rates are presented with the electronic couplings having exponential,Gaussian and linear dependences in terms of the nuclear coordinates,respectively. The proposed formulas have closed forms in time domain and they thus can be easily applied in multi-mode systems. Then,the driving force dependences of the ET rates involving the non-Condon effect are calculated with the use of full quantum mechanical formulas. It is found that these dependences show very different prop-erties from the Marcus one. As an example of applications,the approaches are used to investigate the non-Condon effect on the mobility of the organic semiconductor dithiophene-tetrathiafulvalene (DT-TTF). The results manifest that the non-Condon ef-fect enhances ET rates compared with the Condon approximation,and static fluctuations of electronic coupling dominate the ET rate in the DT-TTF,which has been confirmed by the molecular dynamics simulation.展开更多
基金the National Natrual Science Foundation of China (21290193)
文摘This project aims to attack the frontiers of electronic structure calculations on the excited states of large molecules and molecular aggregates by developing novel theoretical and computational methods. The methodology development is especially based on the time-dependent density functional theory (TDDFT) and valence bond (VB) theory, and is expected to be computationally effective and accurate as well. Research works on the following related subjects will be performed: (1) The analytical energy-derivative approaches for electronically excited state within TDDFT will be developed to reduce bypass the computational costs in the calculation of molecular excited-state properties. (2) The ab initio methods for electronically excited state based on VB theory and hybrid TDDFT-VB method will be developed to overcome the limitations of current TDDFT in simulating photophysics and photochemistry. (3) For larger aggregates, neither ab initio methods nor TDDFT is applicable. We intend to build the effective model Hamiltonian by developing novel theoretical and computational methods to calculate the involved microscopic physical parameters from the first-principles methods. The constructed effective Hamiltonian is then used to describe the excitonic states and excitonic dynamics of the natural or artificial photosynthesized systems, organic or inorganic photovoltaic cell. (4) The condensed phase environment is taken into account by combining the developed theories and algorithms based on TDDFT and VB with the polarizable continuum solvent models (PCM), molecular mechanism (MM), classical electrodynamics (ED) or molecular dynamics (MD) theory. (5) Highly efficient software packages will be designed and developed.
基金the National Natural Science Foundation of China (21290190)
文摘We present here a brief summary of a National Natural Science Foundation Major Project entitled "Theoretical study of the low-lying electronic excited state for molecular aggregates". The project focuses on theoretical investigation of the electronic structures and dynamic processes upon photo-and electric-excitation for molecules and aggregates. We aim to develop reliable methodology to predict the optoelectronic properties of molecular materials related to the electronic excitations and to apply in the experiments. We identify two essential scientific challenges: (i) nature of intramolecular and intermolecular electronic excited states; (ii) theoretical description of the dynamic processes of the coupled motion of electronic excitations and nucleus. We propose the following four subjects of research: (i) linear scaling time-dependent density-functional theory and its application to open shell system; (ii) computational method development of electronic excited state for molecular aggregates; (iii) theoretical investigation of the time evolution of the excited state dynamics; (iv) methods to predict the optoelectronic properties starting from electronic excited state investigation for organic materials and experimental verifications.
基金supported by the National Natural Science Foundation of China (Grant Nos. 20673104, 20833003)the 973 project (Grant Nos. 2004CB719901 and 2006CB922004)
文摘Absorption and photoluminescence spectroscopies are useful tools to study the photo-physical properties of materials. The theoretical methods for calculation of the spectra of molecules/supermolecules and aggregates, whose structures can differ significantly, are reviewed from the viewpoint of computational efficiency. Several model compounds/multimers are taken as examples for the spectral calculations. The numerical results achieve a satisfactory agreement between the theory and experiment.
基金support from the National Natural Science Foundation of China(21073168,21290193)The National Basic Research Program of China(2011CB808501)is acknowledged
文摘We review our recent work on the methodology development of the excited-state properties for the molecules in vacuum and liquid solution.The general algorithms of analytical energy derivatives for the specific properties such as the first and second geometrical derivatives and IR/Raman intensities are demonstrated in the framework of the time-dependent density functional theory(TDDFT).The performance of the analytical approaches on the calculation of excited-state energy Hessian has also been shown.It is found that the analytical approaches are superior to the finite-difference method on the computational accuracy and efficiency.The computational cost for a TDDFT excited-state Hessian calculation is only 2–3 times as that for the DFT ground-state Hessian calculation.With the low computational complexity of the developed analytical approaches,it becomes feasible to realize the large-scale numerical calculations on the excited-state vibrational frequencies,vibrational spectroscopies and the electronic-structure parameters which enter the spectrum calculations of electronic absorption and emission,and resonance Raman spectroscopies for medium-to large-sized systems.
基金supported by the National Natural Science Foundation of China (20833004 and 21073146)Research Fund for the Doctoral Program of Higher Education of China (200803840009)
文摘The non-Condon effect plays an important role in the process of electron transfer (ET). Several theoretical models have been proposed to investigate its effect on ET rates. In this paper,we overview a theoretical method for the calculations of the non-Condon ET rate constants proposed by us,and its applications to organic semiconductors. First,full quantum expressions of the non-Condon ET rates are presented with the electronic couplings having exponential,Gaussian and linear dependences in terms of the nuclear coordinates,respectively. The proposed formulas have closed forms in time domain and they thus can be easily applied in multi-mode systems. Then,the driving force dependences of the ET rates involving the non-Condon effect are calculated with the use of full quantum mechanical formulas. It is found that these dependences show very different prop-erties from the Marcus one. As an example of applications,the approaches are used to investigate the non-Condon effect on the mobility of the organic semiconductor dithiophene-tetrathiafulvalene (DT-TTF). The results manifest that the non-Condon ef-fect enhances ET rates compared with the Condon approximation,and static fluctuations of electronic coupling dominate the ET rate in the DT-TTF,which has been confirmed by the molecular dynamics simulation.