Human neural stem cell-derived extracellular vesicles exhibit analogous functions to their parental cells,and can thus be used as substitutes for stem cells in stem cell therapy,thereby mitigating the risks of stem ce...Human neural stem cell-derived extracellular vesicles exhibit analogous functions to their parental cells,and can thus be used as substitutes for stem cells in stem cell therapy,thereby mitigating the risks of stem cell therapy and advancing the frontiers of stem cell-derived treatments.This lays a foundation for the development of potentially potent new treatment modalities for ischemic stroke.However,the precise mechanisms underlying the efficacy and safety of human neural stem cell-derived extracellular vesicles remain unclear,presenting challenges for clinical translation.To promote the translation of therapy based on human neural stem cell-derived extracellular vesicles from the bench to the bedside,we conducted a comprehensive preclinical study to evaluate the efficacy and safety of human neural stem cell-derived extracellular vesicles in the treatment of ischemic stroke.We found that administration of human neural stem cell-derived extracellular vesicles to an ischemic stroke rat model reduced the volume of cerebral infarction and promoted functional recovery by alleviating neuronal apoptosis.The human neural stem cell-derived extracellular vesicles reduced neuronal apoptosis by enhancing phosphorylation of phosphoinositide 3-kinase,mammalian target of rapamycin,and protein kinase B,and these effects were reversed by treatment with a phosphoinositide 3-kinase inhibitor.These findings suggest that human neural stem cell-derived extracellular vesicles play a neuroprotective role in ischemic stroke through activation of phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway.Finally,we showed that human neural stem cell-derived extracellular vesicles have a good in vivo safety profile.Therefore,human neural stem cell-derived extracellular vesicles are a promising potential agent for the treatment of ischemic stroke.展开更多
BACKGROUND Rhabdomyosarcoma of the uterine cervix is a rare form of soft-tissue sarcoma predominantly affecting young women,with no established standard treatment protocol.CASE SUMMARY This report presents a case of a...BACKGROUND Rhabdomyosarcoma of the uterine cervix is a rare form of soft-tissue sarcoma predominantly affecting young women,with no established standard treatment protocol.CASE SUMMARY This report presents a case of a 17-year-old female patient presenting with in-termittent,non-cyclical vaginal bleeding and associated lower abdominal pain.Pelvic magnetic resonance imaging and additional examinations led to the dia-gnosis of cervical rhabdomyosarcoma.The primary treatment options for uterine cervical rhabdomyosarcoma include surgery,with or without adjuvant chemo-therapy and radiotherapy.This patient underwent surgery followed by a posto-perative chemotherapy regimen of gemcitabine combined with docetaxel and bevacizumab.After 19 months of follow-up,the patient showed no signs of re-currence and maintained good overall health.Given the rarity of cervix rhab-domyosarcoma,this case is presented to provide insights into the diagnosis and treatment of this condition.CONCLUSION This suggests that bevacizumab may demonstrate potential efficacy in the treat-ment of cervical rhabdomyosarcoma.In the future,targeted therapy is expected to play an increasingly significant role in the management of rhabdomyosarcoma.展开更多
Gastrointestinal hemangioma(GIH)is clinically rare,accounting for 7%-10%of benign gastrointestinal tumors and 0.5%of systemic hemangiomas.GIH can occur as either solitary or multiple lesions,with gastrointestinal blee...Gastrointestinal hemangioma(GIH)is clinically rare,accounting for 7%-10%of benign gastrointestinal tumors and 0.5%of systemic hemangiomas.GIH can occur as either solitary or multiple lesions,with gastrointestinal bleeding as a significant clinical manifestation.Understanding the clinical and endoscopic features of GIH is essential for improving diagnostic accuracy,particularly through endoscopy and selective arteriography,which are highly effective in diagnosing GIH and preventing misdiagnosis and inappropriate treatment.Upon confirmed diagnosis,it is essential to thoroughly evaluate the patient's condition to determine the most suitable treatment modality—whether surgical,endoscopic,or minimally invasive intervention.The minimally invasive interventional partial embolization therapy using polyvinyl alcohol particles,proposed and implemented by Pospisilova et al,has achieved excellent clinical outcomes.This approach reduces surgical trauma and the inherent risks of traditional surgical treatments.展开更多
Currently,the use of immune checkpoint inhibitors(ICIs)has shown notable clinical efficacy in treating various malignant tumors,significantly improving patient prognosis.However,while ICIs enhance the body’s anti-tum...Currently,the use of immune checkpoint inhibitors(ICIs)has shown notable clinical efficacy in treating various malignant tumors,significantly improving patient prognosis.However,while ICIs enhance the body’s anti-tumor effects,they can also trigger immune-related adverse events(irAEs),with ICI-associated colitis being one of the more prevalent forms.This condition can disrupt treatment,necessitate drug discontinuation,and adversely affect therapeutic outcomes.In severe cases,irAEs may even become life-threatening.A recent case report by Hong et al highlights the importance of vigilance for ICI-associated colitis in patients experiencing symptoms such as diarrhea and abdominal pain,which can arise both during and even after completion of ICI treatment.Early identification,multidisciplinary management,and continuous monitoring of patients are essential steps to further improve outcomes.展开更多
Immune checkpoint inhibitors augment the antitumor activity of T cells by inhibiting the negative regulatory pathway of T cells,leading to notable efficacy in patients with non-small cell lung cancer,melanoma,and othe...Immune checkpoint inhibitors augment the antitumor activity of T cells by inhibiting the negative regulatory pathway of T cells,leading to notable efficacy in patients with non-small cell lung cancer,melanoma,and other malignancies through immunotherapy utilization.However,secondary malignant liver tumors not only lower the liver's sensitivity to immunotherapy but also trigger systemic immune suppression,resulting in reduced overall effectiveness of immune therapy.Patients receiving immunotherapy for non-small cell lung cancer and melanoma experience reduced response rates,progression-free survival,and overall survival when secondary malignant tumors develop in the liver.Through Liu's retrospective analysis,valuable insights are provided for the future clinical management of these patients.Therefore,in patients with gastric cancer(GC),the occurrence of liver metastasis might be indicative of reduced efficacy of immuno-therapy.Overcoming liver immune tolerance mechanisms and their negative impacts allows for the potential benefits of immunotherapy in patients with GC and liver metastasis.INTRODUCTION Gastric cancer(GC)ranks among the prevalent malignancies affecting the digestive system globally.Based on the latest epidemiological data[1,2],it holds the fifth position for incidence and the fourth position for mortality among all malignant tumors.GC cases and fatalities in China make up roughly half of the worldwide figures.Earlier investigations[3]have demonstrated that the median overall survival(mOS)among advanced GC patients left untreated typically ranges from 3 to 4 months.Systemic chemotherapy recipients often experience a mOS of around one year,accompanied by a marked improvement in the quality of life among patients with advanced GC.The mainstay of treatment for advanced GC patients involves chemotherapeutic medications such as fluoropyrimidines,platinum compounds,and taxanes.However,their efficacy in tumor control is constrained by acquired resistance and primary resistance.The rise of personalized precision therapy has propelled immunotherapy into the spotlight as a crucial component of comprehensive treatment[4].By blocking the negative regulatory pathways of T cells,immune checkpoint inhibitors(ICIs)boost the anti-tumor effect of T cells.Immunotherapy has brought about significant therapeutic benefits for patients diagnosed with non-small cell lung cancer,melanoma,and related illnesses[5,6],instilling newfound hope in those with advanced GC[7].However,phase III clinical trial data[8-12]reveals that the incorporation of immunotherapy into chemotherapy regimens improves overall survival(OS)outcomes for patients with advanced GC.The liver's immune-exempt nature renders it less responsive to immunotherapy when secondary malignant tumors are present,fostering systemic immune suppression and yielding unfavorable outcomes in immune therapy[13-15].In retrospective research[16-20]pertaining to non-small cell lung cancer and melanoma,it has been observed that the presence of secondary liver malignancies may lower the response rate,progression-free survival(PFS),and OS rates in patients treated with immunotherapy,independent of factors such as tumor mutation burden and PD-L1 expression.Despite this,there is a paucity of studies examining whether the existence of secondary malignant liver tumors affects the effectiveness of immunotherapy in patients diagnosed with advanced HER-2 negative GC.展开更多
In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a gene...In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics.展开更多
As a clean and renewable form of energy,photovoltaic(PV)power generation converts solar energy into electrical energy,reducing the consumption of fossil fuels and significantly lowering greenhouse gas emissions.Amidst...As a clean and renewable form of energy,photovoltaic(PV)power generation converts solar energy into electrical energy,reducing the consumption of fossil fuels and significantly lowering greenhouse gas emissions.Amidst the global transition towards cleaner forms of energy,countries all around the world are vigorously developing PV technology.展开更多
Surface charge localization and inferior charge transfer efficiency seriously restrict the supply of reactive hydrogen and the reaction dynamics of CO_(2) photoreduction performance of photocatalysts.Herein,chemically...Surface charge localization and inferior charge transfer efficiency seriously restrict the supply of reactive hydrogen and the reaction dynamics of CO_(2) photoreduction performance of photocatalysts.Herein,chemically bonded BiVO_(4)/Bi_(19)Cl_(3)S_(27)(BVO/BCS)S-scheme heterojunction with a strong internal electric field is designed.Experimental and density function theory calculation results confirm that the elaborated heterojunction accelerates the vectorial migration of photogenerated charges from BiVO_(4) to Bi_(19)Cl_(3)S_(27) via the interfacial chemical bonding interactions(i.e.,Bi-O and Bi-S bonds)between Bi atoms of BVO and S atoms of BCS or Bi atoms of BCS and O atoms of BVO under light irradiation,breaking the interfacial barrier and surface charge localization of Bi_(19)Cl_(3)S_(27),and further decreasing the energy of reactive hydrogen generation,CO_(2) absorption and activation.The separation efficiency of photogenerated carriers is much more efficient than that counterpart individual in BVO/BCS S-scheme heterojunction system.As a result,BVO/BCS heterojunction exhibits a significantly improved continuous photocatalytic performance for CO_(2) reduction and the 24 h CO yield reaches 678.27μmol⋅g^(-1).This work provides an atomic-level insight into charge transfer kinetics and CO_(2) reduction mechanism in S-scheme heterojunction.展开更多
We report the confirmation of a sub-Saturn-size exoplanet,TOI-1194 b,with a mass of about 0.456+0.055-0.051M_(J),and a very low mass companion star with a mass of about 96.5±1.5 MJ,TOI-1251 B.Exoplanet candidates...We report the confirmation of a sub-Saturn-size exoplanet,TOI-1194 b,with a mass of about 0.456+0.055-0.051M_(J),and a very low mass companion star with a mass of about 96.5±1.5 MJ,TOI-1251 B.Exoplanet candidates provided by the Transiting Exoplanet Survey Satellite(TESS)are suitable for further follow-up observations by ground-based telescopes with small and medium apertures.The analysis is performed based on data from several telescopes worldwide,including telescopes in the Sino-German multiband photometric campaign,which aimed at confirming TESS Objects of Interest(TOIs)using ground-based small-aperture and medium-aperture telescopes,especially for long-period targets.TOI-1194 b is confirmed based on the consistent periodic transit depths from the multiband photometric data.We measure an orbital period of 2.310644±0.000001 days,the radius is 0.767+0.045-0.041RJ and the amplitude of the RV curve is 69.4_(-7.3)^(+7.9)m s^(-1).TOI-1251 B is confirmed based on the multiband photometric and high-resolution spectroscopic data,whose orbital period is 5.963054+0.000002-0.000001days,radius is 0.947+0.035-0.033 R_(J) and amplitude of the RV curve is 9849_(-40)^(+42)ms^(-1).展开更多
The 28 nm process has a high cost-performance ratio and has gradually become the standard for the field of radiation-hardened devices.However,owing to the minimum physical gate length of only 35 nm,the physical area o...The 28 nm process has a high cost-performance ratio and has gradually become the standard for the field of radiation-hardened devices.However,owing to the minimum physical gate length of only 35 nm,the physical area of a standard 6T SRAM unit is approximately 0.16μm^(2),resulting in a significant enhancement of multi-cell charge-sharing effects.Multiple-cell upsets(MCUs)have become the primary physical mechanism behind single-event upsets(SEUs)in advanced nanometer node devices.The range of ionization track effects increases with higher ion energies,and spacecraft in orbit primarily experience SEUs caused by high-energy ions.However,ground accelerator experiments have mainly obtained low-energy ion irradiation data.Therefore,the impact of ion energy on the SEU cross section,charge collection mechanisms,and MCU patterns and quantities in advanced nanometer devices remains unclear.In this study,based on the experimental platform of the Heavy Ion Research Facility in Lanzhou,low-and high-energy heavy-ion beams were used to study the SEUs of 28 nm SRAM devices.The influence of ion energy on the charge collection processes of small-sensitive-volume devices,MCU patterns,and upset cross sections was obtained,and the applicable range of the inverse cosine law was clarified.The findings of this study are an important guide for the accurate evaluation of SEUs in advanced nanometer devices and for the development of radiation-hardening techniques.展开更多
Both bulk stress(σ_(i i))and stress path(SP)significantly affect the transportation characteristics of deep gas during reservoir pressure depletion.Therefore,the experimental study of horizontal stress unloading on s...Both bulk stress(σ_(i i))and stress path(SP)significantly affect the transportation characteristics of deep gas during reservoir pressure depletion.Therefore,the experimental study of horizontal stress unloading on seepage behavior of gas-bearing coal under constantσi i-constraints is performed.The results show that coal permeability is affected by horizontal stress anisotropy(σ_(H)≠σh),and the contribution of minor horizontal stress to permeability is related to the differential response of horizontal strain.The slippage phenomenon is prominent in deep high-stress regime,especially in low reservoir pressure.σ_(i i)and SP jointly determine the manifestation of slippage effect and the strength of stress sensitivity(γ)of permeability.Deep reservoir implies an incremental percentage of slip-based permeability,and SP weakens the slippage effect by changing the elastic–plastic state of coal.However,γis negatively correlated with slippage effect.From the Walsh model,narrow(low aspect-ratio)fractures within the coal under unloading SP became the main channel for gas seepage,and bring the effective stress coefficient of permeability(χ)less than 1 for both low-stress elastic and high-stress damaged coal.With the raise of the effective stress,the effect of pore-lined clay particles on permeability was enhanced,inducing an increase inχfor highstress elastic coal.展开更多
As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for...As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for people to spread and share information.Nevertheless,SIoT is characterized by high openness and autonomy,multiple kinds of information can spread rapidly,freely and cooperatively in SIoT,which makes it challenging to accurately reveal the characteristics of the information diffusion process and effectively control its diffusion.To this end,with the aim of exploring multi-information cooperative diffusion processes in SIoT,we first develop a dynamics model for multi-information cooperative diffusion based on the system dynamics theory in this paper.Subsequently,the characteristics and laws of the dynamical evolution process of multi-information cooperative diffusion are theoretically investigated,and the diffusion trend is predicted.On this basis,to further control the multi-information cooperative diffusion process efficiently,we propose two control strategies for information diffusion with control objectives,develop an optimal control system for the multi-information cooperative diffusion process,and propose the corresponding optimal control method.The optimal solution distribution of the control strategy satisfying the control system constraints and the control budget constraints is solved using the optimal control theory.Finally,extensive simulation experiments based on real dataset from Twitter validate the correctness and effectiveness of the proposed model,strategy and method.展开更多
All polymer solar cells(all-PSCs)promise mechanically-flexible and morphologically-stable organic photovoltaics and have aroused increased interests very recently.However,due to their disorderly conformation structure...All polymer solar cells(all-PSCs)promise mechanically-flexible and morphologically-stable organic photovoltaics and have aroused increased interests very recently.However,due to their disorderly conformation structures within the photoactive film,inefficient charge generation and carrier transport are observed which lead to inferior photovoltaic performance compared to smaller molecular acceptor-based photovoltaics.Here,by diluting PM6 with a cutting-edge polymeric acceptor PY-IT and diluting PY-IT with PM6 or D18,donor-dominating or acceptor-dominating heterojunctions were prepared.Synchrotron X-ray and multiple spectrometer techniques reveal that the diluted heterojunctions receive increased structural order,translating to enhanced carrier mobility,improved exciton diffusion length,and suppressed non-radiative recombination loss during the power conversion.As the results,the corresponding PM6+1%PY-IT/PY-IT+1%D18 and PM6+1%PY-IT/PY-IT+1%PM6 devices fabricated by layer-by-layer deposition received superior power conversion efficiency(PCE)of 19.4%and 18.8%respectively,along with enhanced operational lifetimes in air,outperforming the PCE of 17.5%in the PM6/PY-IT reference device.展开更多
基金supported by the National Nature Science Foundation of China,No.81471308(to JL)the Innovative Leading Talents of Liaoning Province,No.XLYC1902031(to JL)+2 种基金Science and Technology Projects in Liaoning Province,No.2022-BS-238(to CH)Young Top Talents of Liaoning Province,No.XLYC1907009(to LW)Dalian Science and Technology Innovation Fund,No.2018J11CY025(to JL)。
文摘Human neural stem cell-derived extracellular vesicles exhibit analogous functions to their parental cells,and can thus be used as substitutes for stem cells in stem cell therapy,thereby mitigating the risks of stem cell therapy and advancing the frontiers of stem cell-derived treatments.This lays a foundation for the development of potentially potent new treatment modalities for ischemic stroke.However,the precise mechanisms underlying the efficacy and safety of human neural stem cell-derived extracellular vesicles remain unclear,presenting challenges for clinical translation.To promote the translation of therapy based on human neural stem cell-derived extracellular vesicles from the bench to the bedside,we conducted a comprehensive preclinical study to evaluate the efficacy and safety of human neural stem cell-derived extracellular vesicles in the treatment of ischemic stroke.We found that administration of human neural stem cell-derived extracellular vesicles to an ischemic stroke rat model reduced the volume of cerebral infarction and promoted functional recovery by alleviating neuronal apoptosis.The human neural stem cell-derived extracellular vesicles reduced neuronal apoptosis by enhancing phosphorylation of phosphoinositide 3-kinase,mammalian target of rapamycin,and protein kinase B,and these effects were reversed by treatment with a phosphoinositide 3-kinase inhibitor.These findings suggest that human neural stem cell-derived extracellular vesicles play a neuroprotective role in ischemic stroke through activation of phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway.Finally,we showed that human neural stem cell-derived extracellular vesicles have a good in vivo safety profile.Therefore,human neural stem cell-derived extracellular vesicles are a promising potential agent for the treatment of ischemic stroke.
文摘BACKGROUND Rhabdomyosarcoma of the uterine cervix is a rare form of soft-tissue sarcoma predominantly affecting young women,with no established standard treatment protocol.CASE SUMMARY This report presents a case of a 17-year-old female patient presenting with in-termittent,non-cyclical vaginal bleeding and associated lower abdominal pain.Pelvic magnetic resonance imaging and additional examinations led to the dia-gnosis of cervical rhabdomyosarcoma.The primary treatment options for uterine cervical rhabdomyosarcoma include surgery,with or without adjuvant chemo-therapy and radiotherapy.This patient underwent surgery followed by a posto-perative chemotherapy regimen of gemcitabine combined with docetaxel and bevacizumab.After 19 months of follow-up,the patient showed no signs of re-currence and maintained good overall health.Given the rarity of cervix rhab-domyosarcoma,this case is presented to provide insights into the diagnosis and treatment of this condition.CONCLUSION This suggests that bevacizumab may demonstrate potential efficacy in the treat-ment of cervical rhabdomyosarcoma.In the future,targeted therapy is expected to play an increasingly significant role in the management of rhabdomyosarcoma.
基金Supported by Science and Technology Plan of Qinghai Province,No.2023-ZJ-787.
文摘Gastrointestinal hemangioma(GIH)is clinically rare,accounting for 7%-10%of benign gastrointestinal tumors and 0.5%of systemic hemangiomas.GIH can occur as either solitary or multiple lesions,with gastrointestinal bleeding as a significant clinical manifestation.Understanding the clinical and endoscopic features of GIH is essential for improving diagnostic accuracy,particularly through endoscopy and selective arteriography,which are highly effective in diagnosing GIH and preventing misdiagnosis and inappropriate treatment.Upon confirmed diagnosis,it is essential to thoroughly evaluate the patient's condition to determine the most suitable treatment modality—whether surgical,endoscopic,or minimally invasive intervention.The minimally invasive interventional partial embolization therapy using polyvinyl alcohol particles,proposed and implemented by Pospisilova et al,has achieved excellent clinical outcomes.This approach reduces surgical trauma and the inherent risks of traditional surgical treatments.
基金Supported by 2021 Key Topic of Qinghai Provincial Health System–Guiding Plan Topic,No.2021-WJZDX-43.
文摘Currently,the use of immune checkpoint inhibitors(ICIs)has shown notable clinical efficacy in treating various malignant tumors,significantly improving patient prognosis.However,while ICIs enhance the body’s anti-tumor effects,they can also trigger immune-related adverse events(irAEs),with ICI-associated colitis being one of the more prevalent forms.This condition can disrupt treatment,necessitate drug discontinuation,and adversely affect therapeutic outcomes.In severe cases,irAEs may even become life-threatening.A recent case report by Hong et al highlights the importance of vigilance for ICI-associated colitis in patients experiencing symptoms such as diarrhea and abdominal pain,which can arise both during and even after completion of ICI treatment.Early identification,multidisciplinary management,and continuous monitoring of patients are essential steps to further improve outcomes.
基金2021 Key Topic of Qinghai Provincial Health System–Guiding Plan Topic,No.2021-WJZDX-43.
文摘Immune checkpoint inhibitors augment the antitumor activity of T cells by inhibiting the negative regulatory pathway of T cells,leading to notable efficacy in patients with non-small cell lung cancer,melanoma,and other malignancies through immunotherapy utilization.However,secondary malignant liver tumors not only lower the liver's sensitivity to immunotherapy but also trigger systemic immune suppression,resulting in reduced overall effectiveness of immune therapy.Patients receiving immunotherapy for non-small cell lung cancer and melanoma experience reduced response rates,progression-free survival,and overall survival when secondary malignant tumors develop in the liver.Through Liu's retrospective analysis,valuable insights are provided for the future clinical management of these patients.Therefore,in patients with gastric cancer(GC),the occurrence of liver metastasis might be indicative of reduced efficacy of immuno-therapy.Overcoming liver immune tolerance mechanisms and their negative impacts allows for the potential benefits of immunotherapy in patients with GC and liver metastasis.INTRODUCTION Gastric cancer(GC)ranks among the prevalent malignancies affecting the digestive system globally.Based on the latest epidemiological data[1,2],it holds the fifth position for incidence and the fourth position for mortality among all malignant tumors.GC cases and fatalities in China make up roughly half of the worldwide figures.Earlier investigations[3]have demonstrated that the median overall survival(mOS)among advanced GC patients left untreated typically ranges from 3 to 4 months.Systemic chemotherapy recipients often experience a mOS of around one year,accompanied by a marked improvement in the quality of life among patients with advanced GC.The mainstay of treatment for advanced GC patients involves chemotherapeutic medications such as fluoropyrimidines,platinum compounds,and taxanes.However,their efficacy in tumor control is constrained by acquired resistance and primary resistance.The rise of personalized precision therapy has propelled immunotherapy into the spotlight as a crucial component of comprehensive treatment[4].By blocking the negative regulatory pathways of T cells,immune checkpoint inhibitors(ICIs)boost the anti-tumor effect of T cells.Immunotherapy has brought about significant therapeutic benefits for patients diagnosed with non-small cell lung cancer,melanoma,and related illnesses[5,6],instilling newfound hope in those with advanced GC[7].However,phase III clinical trial data[8-12]reveals that the incorporation of immunotherapy into chemotherapy regimens improves overall survival(OS)outcomes for patients with advanced GC.The liver's immune-exempt nature renders it less responsive to immunotherapy when secondary malignant tumors are present,fostering systemic immune suppression and yielding unfavorable outcomes in immune therapy[13-15].In retrospective research[16-20]pertaining to non-small cell lung cancer and melanoma,it has been observed that the presence of secondary liver malignancies may lower the response rate,progression-free survival(PFS),and OS rates in patients treated with immunotherapy,independent of factors such as tumor mutation burden and PD-L1 expression.Despite this,there is a paucity of studies examining whether the existence of secondary malignant liver tumors affects the effectiveness of immunotherapy in patients diagnosed with advanced HER-2 negative GC.
基金supported by the Swiss National Science Foundation(Grant No.189882)the National Natural Science Foundation of China(Grant No.41961134032)support provided by the New Investigator Award grant from the UK Engineering and Physical Sciences Research Council(Grant No.EP/V012169/1).
文摘In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics.
文摘As a clean and renewable form of energy,photovoltaic(PV)power generation converts solar energy into electrical energy,reducing the consumption of fossil fuels and significantly lowering greenhouse gas emissions.Amidst the global transition towards cleaner forms of energy,countries all around the world are vigorously developing PV technology.
基金financially supported by Outstanding Talent Research Fund of Zhengzhou University,China Postdoc toral Science Foundation(2020TQ0277,2020M682328)Central Plains Science and Technology Innovation Leader Project(214200510006)+1 种基金China Scholarship Council(No.202108410356)Postdoctoral Science Foundation of Henan province(202002010).
文摘Surface charge localization and inferior charge transfer efficiency seriously restrict the supply of reactive hydrogen and the reaction dynamics of CO_(2) photoreduction performance of photocatalysts.Herein,chemically bonded BiVO_(4)/Bi_(19)Cl_(3)S_(27)(BVO/BCS)S-scheme heterojunction with a strong internal electric field is designed.Experimental and density function theory calculation results confirm that the elaborated heterojunction accelerates the vectorial migration of photogenerated charges from BiVO_(4) to Bi_(19)Cl_(3)S_(27) via the interfacial chemical bonding interactions(i.e.,Bi-O and Bi-S bonds)between Bi atoms of BVO and S atoms of BCS or Bi atoms of BCS and O atoms of BVO under light irradiation,breaking the interfacial barrier and surface charge localization of Bi_(19)Cl_(3)S_(27),and further decreasing the energy of reactive hydrogen generation,CO_(2) absorption and activation.The separation efficiency of photogenerated carriers is much more efficient than that counterpart individual in BVO/BCS S-scheme heterojunction system.As a result,BVO/BCS heterojunction exhibits a significantly improved continuous photocatalytic performance for CO_(2) reduction and the 24 h CO yield reaches 678.27μmol⋅g^(-1).This work provides an atomic-level insight into charge transfer kinetics and CO_(2) reduction mechanism in S-scheme heterojunction.
基金supported by National Natural Science Foundation of China(NSFC,Grant Nos.U1831209 and U2031144)the research fund of Ankara University(BAP)through the project 18A0759001。
文摘We report the confirmation of a sub-Saturn-size exoplanet,TOI-1194 b,with a mass of about 0.456+0.055-0.051M_(J),and a very low mass companion star with a mass of about 96.5±1.5 MJ,TOI-1251 B.Exoplanet candidates provided by the Transiting Exoplanet Survey Satellite(TESS)are suitable for further follow-up observations by ground-based telescopes with small and medium apertures.The analysis is performed based on data from several telescopes worldwide,including telescopes in the Sino-German multiband photometric campaign,which aimed at confirming TESS Objects of Interest(TOIs)using ground-based small-aperture and medium-aperture telescopes,especially for long-period targets.TOI-1194 b is confirmed based on the consistent periodic transit depths from the multiband photometric data.We measure an orbital period of 2.310644±0.000001 days,the radius is 0.767+0.045-0.041RJ and the amplitude of the RV curve is 69.4_(-7.3)^(+7.9)m s^(-1).TOI-1251 B is confirmed based on the multiband photometric and high-resolution spectroscopic data,whose orbital period is 5.963054+0.000002-0.000001days,radius is 0.947+0.035-0.033 R_(J) and amplitude of the RV curve is 9849_(-40)^(+42)ms^(-1).
基金supported by the National Natural Science Foundation of China(Nos.12105341 and 12035019)the opening fund of Key Laboratory of Silicon Device and Technology,Chinese Academy of Sciences(No.KLSDTJJ2022-3).
文摘The 28 nm process has a high cost-performance ratio and has gradually become the standard for the field of radiation-hardened devices.However,owing to the minimum physical gate length of only 35 nm,the physical area of a standard 6T SRAM unit is approximately 0.16μm^(2),resulting in a significant enhancement of multi-cell charge-sharing effects.Multiple-cell upsets(MCUs)have become the primary physical mechanism behind single-event upsets(SEUs)in advanced nanometer node devices.The range of ionization track effects increases with higher ion energies,and spacecraft in orbit primarily experience SEUs caused by high-energy ions.However,ground accelerator experiments have mainly obtained low-energy ion irradiation data.Therefore,the impact of ion energy on the SEU cross section,charge collection mechanisms,and MCU patterns and quantities in advanced nanometer devices remains unclear.In this study,based on the experimental platform of the Heavy Ion Research Facility in Lanzhou,low-and high-energy heavy-ion beams were used to study the SEUs of 28 nm SRAM devices.The influence of ion energy on the charge collection processes of small-sensitive-volume devices,MCU patterns,and upset cross sections was obtained,and the applicable range of the inverse cosine law was clarified.The findings of this study are an important guide for the accurate evaluation of SEUs in advanced nanometer devices and for the development of radiation-hardening techniques.
基金financially supported by the National Natural Science Foundation of China(Nos.52304265,52174216,and 52274145)the Natural Science Foundation of Jiangsu Province(No.BK20221121)the State Key Laboratory of Mining Disaster Prevention and Control(Shandong University of Science and Technology)and Ministry of Education(No.JMDPC202301)。
文摘Both bulk stress(σ_(i i))and stress path(SP)significantly affect the transportation characteristics of deep gas during reservoir pressure depletion.Therefore,the experimental study of horizontal stress unloading on seepage behavior of gas-bearing coal under constantσi i-constraints is performed.The results show that coal permeability is affected by horizontal stress anisotropy(σ_(H)≠σh),and the contribution of minor horizontal stress to permeability is related to the differential response of horizontal strain.The slippage phenomenon is prominent in deep high-stress regime,especially in low reservoir pressure.σ_(i i)and SP jointly determine the manifestation of slippage effect and the strength of stress sensitivity(γ)of permeability.Deep reservoir implies an incremental percentage of slip-based permeability,and SP weakens the slippage effect by changing the elastic–plastic state of coal.However,γis negatively correlated with slippage effect.From the Walsh model,narrow(low aspect-ratio)fractures within the coal under unloading SP became the main channel for gas seepage,and bring the effective stress coefficient of permeability(χ)less than 1 for both low-stress elastic and high-stress damaged coal.With the raise of the effective stress,the effect of pore-lined clay particles on permeability was enhanced,inducing an increase inχfor highstress elastic coal.
基金supported by the National Natural Science Foundation of China(Grant Nos.62102240,62071283)the China Postdoctoral Science Foundation(Grant No.2020M683421)the Key R&D Program of Shaanxi Province(Grant No.2020ZDLGY10-05).
文摘As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for people to spread and share information.Nevertheless,SIoT is characterized by high openness and autonomy,multiple kinds of information can spread rapidly,freely and cooperatively in SIoT,which makes it challenging to accurately reveal the characteristics of the information diffusion process and effectively control its diffusion.To this end,with the aim of exploring multi-information cooperative diffusion processes in SIoT,we first develop a dynamics model for multi-information cooperative diffusion based on the system dynamics theory in this paper.Subsequently,the characteristics and laws of the dynamical evolution process of multi-information cooperative diffusion are theoretically investigated,and the diffusion trend is predicted.On this basis,to further control the multi-information cooperative diffusion process efficiently,we propose two control strategies for information diffusion with control objectives,develop an optimal control system for the multi-information cooperative diffusion process,and propose the corresponding optimal control method.The optimal solution distribution of the control strategy satisfying the control system constraints and the control budget constraints is solved using the optimal control theory.Finally,extensive simulation experiments based on real dataset from Twitter validate the correctness and effectiveness of the proposed model,strategy and method.
基金supported by the Key Research and Development Program of Hubei Province(2023BAB116)the National Natural Science Foundation of China(52203238,52273196,52073221)the Fundamental Research Funds for the Central Universities of China(WUT:2021III016JC).
文摘All polymer solar cells(all-PSCs)promise mechanically-flexible and morphologically-stable organic photovoltaics and have aroused increased interests very recently.However,due to their disorderly conformation structures within the photoactive film,inefficient charge generation and carrier transport are observed which lead to inferior photovoltaic performance compared to smaller molecular acceptor-based photovoltaics.Here,by diluting PM6 with a cutting-edge polymeric acceptor PY-IT and diluting PY-IT with PM6 or D18,donor-dominating or acceptor-dominating heterojunctions were prepared.Synchrotron X-ray and multiple spectrometer techniques reveal that the diluted heterojunctions receive increased structural order,translating to enhanced carrier mobility,improved exciton diffusion length,and suppressed non-radiative recombination loss during the power conversion.As the results,the corresponding PM6+1%PY-IT/PY-IT+1%D18 and PM6+1%PY-IT/PY-IT+1%PM6 devices fabricated by layer-by-layer deposition received superior power conversion efficiency(PCE)of 19.4%and 18.8%respectively,along with enhanced operational lifetimes in air,outperforming the PCE of 17.5%in the PM6/PY-IT reference device.