True proportional navigation(TPN) guidance law is widely used for exoatmospheric interception, for its robustness and ease of implementation. The performance of TPN against nonmaneuvering target or the maneuvering tar...True proportional navigation(TPN) guidance law is widely used for exoatmospheric interception, for its robustness and ease of implementation. The performance of TPN against nonmaneuvering target or the maneuvering target with a specific acceleration had been analyzed before. However, the obtained results are not suitable for the realistic exoatmospheric interception scenario,since the target may maneuver along an arbitrary direction with an arbitrary but upper-bounded acceleration in the threedimensional(3 D) space, which is the so-called "true-arbitrarily maneuvering target" in this paper. With the help of the line-ofsight(LOS) rotation coordinate system, the performance of 3 D TPN against the true-arbitrarily maneuvering target is thoroughly analyzed using the Lyapunov-like approach. The upper-bound of the 3 D LOS rate is obtained, and so is that of the commanded acceleration of 3 D TPN. After that, the capture region of 3 D TPN is presented on the initial relative velocity plane. The nonlinear3 D relative kinematics between the interceptor and the target is taken into full account. Finally, the new theoretical findings are demonstrated by numerical simulations.展开更多
A novel reachable set(RS) model is developed within a framework of exoatmospheric interceptor engagement analysis. The boost phase steering scheme and trajectory distortion mechanism of the interceptor are firstly e...A novel reachable set(RS) model is developed within a framework of exoatmospheric interceptor engagement analysis. The boost phase steering scheme and trajectory distortion mechanism of the interceptor are firstly explored. A mathematical model of the distorted RS is then formulated through a dimension–reduction analysis. By treating the outer boundary of the RS on sphere surface as a spherical convex hull, two relevant theorems are proposed and the RS envelope is depicted by the computational geometry theory. Based on RS model, the algorithms of intercept window analysis and launch parameters determination are proposed, and numerical simulations are carried out for interceptors with different energy or launch points. Results show that the proposed method can avoid intensive on-line computation and provide an accurate and effective approach for interceptor engagement analysis. The suggested RS model also serves as a ready reference to other related problems such as interceptor effectiveness evaluation and platform disposition.展开更多
Considering the problem that the optimal error dynamics can only converge at the terminal time,an impact angle/time constraint missile guidance law with finite-time convergence is designed in this paper,which is based...Considering the problem that the optimal error dynamics can only converge at the terminal time,an impact angle/time constraint missile guidance law with finite-time convergence is designed in this paper,which is based on the pure proportional navigation(PPN)guidance law and the fast terminal error dynamics(FTED)approach.The missile guidance model and FTED equation are given first,and the dynamic equation of impact angle/time error based on PPN is also derived.Then,the guidance law is designed based on FTED,and the guidance error can converge to 0 in a finite time.Furthermore,considering the field of view constraint,the guidance law is improved by using the saturation function mapping method.Finally,a numerical simulation example is given to verify the effectiveness of the guidance law,which shows that the guidance law proposed in this paper can make the missile quickly adjust to the desired states in advance,and effectively relieve the overload saturation pressure of the actuator.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.61690210 and 61690213)
文摘True proportional navigation(TPN) guidance law is widely used for exoatmospheric interception, for its robustness and ease of implementation. The performance of TPN against nonmaneuvering target or the maneuvering target with a specific acceleration had been analyzed before. However, the obtained results are not suitable for the realistic exoatmospheric interception scenario,since the target may maneuver along an arbitrary direction with an arbitrary but upper-bounded acceleration in the threedimensional(3 D) space, which is the so-called "true-arbitrarily maneuvering target" in this paper. With the help of the line-ofsight(LOS) rotation coordinate system, the performance of 3 D TPN against the true-arbitrarily maneuvering target is thoroughly analyzed using the Lyapunov-like approach. The upper-bound of the 3 D LOS rate is obtained, and so is that of the commanded acceleration of 3 D TPN. After that, the capture region of 3 D TPN is presented on the initial relative velocity plane. The nonlinear3 D relative kinematics between the interceptor and the target is taken into full account. Finally, the new theoretical findings are demonstrated by numerical simulations.
基金co-supported by the National Natural Science Foundation of China (No. 11272346)the National Basic Research Program of China (No. 2013CB733100)
文摘A novel reachable set(RS) model is developed within a framework of exoatmospheric interceptor engagement analysis. The boost phase steering scheme and trajectory distortion mechanism of the interceptor are firstly explored. A mathematical model of the distorted RS is then formulated through a dimension–reduction analysis. By treating the outer boundary of the RS on sphere surface as a spherical convex hull, two relevant theorems are proposed and the RS envelope is depicted by the computational geometry theory. Based on RS model, the algorithms of intercept window analysis and launch parameters determination are proposed, and numerical simulations are carried out for interceptors with different energy or launch points. Results show that the proposed method can avoid intensive on-line computation and provide an accurate and effective approach for interceptor engagement analysis. The suggested RS model also serves as a ready reference to other related problems such as interceptor effectiveness evaluation and platform disposition.
基金the National Natural Science Foundation of China(No.12002370)。
文摘Considering the problem that the optimal error dynamics can only converge at the terminal time,an impact angle/time constraint missile guidance law with finite-time convergence is designed in this paper,which is based on the pure proportional navigation(PPN)guidance law and the fast terminal error dynamics(FTED)approach.The missile guidance model and FTED equation are given first,and the dynamic equation of impact angle/time error based on PPN is also derived.Then,the guidance law is designed based on FTED,and the guidance error can converge to 0 in a finite time.Furthermore,considering the field of view constraint,the guidance law is improved by using the saturation function mapping method.Finally,a numerical simulation example is given to verify the effectiveness of the guidance law,which shows that the guidance law proposed in this paper can make the missile quickly adjust to the desired states in advance,and effectively relieve the overload saturation pressure of the actuator.