Elastohydrodynamic lubrication characteristics of hydraulic reciprocating seals have significant effects on sealing and tribology performances of hydraulic actuators, especially in high parameter hydraulic systems. On...Elastohydrodynamic lubrication characteristics of hydraulic reciprocating seals have significant effects on sealing and tribology performances of hydraulic actuators, especially in high parameter hydraulic systems. Only elastic deformations of hydraulic reciprocating seals were discussed, and hydrodynamic effects were neglected in many studies. The physical process of the fluid-solid interaction effect did not be clearly presented in the existing fluid-solid interaction models for hydraulic reciprocating O-ring seals, and few of these models had been simultaneously validated through experiments. By exploring the physical process of the fluid-solid interaction effect of the hydraulic reciprocating O-ring seal, a numerical fluid-solid interaction model consisting of fluid lubrication, contact mechanics, asperity contact and elastic deformation analyses is constructed with an iterative procedure. With the SRV friction and wear tester, the experiments are performed to investigate the elastohydrodynamic lubrication characteristics of the O-ring seal. The regularity of the friction coefficient varying with the speed of reciprocating motion is obtained in the mixed lubrication condition. The experimental result is used to validate the fluid-solid interaction model. Based on the model, The elastohydrodynamic lubrication characteristics of the hydraulic reciprocating O-ring seal are presented respectively in the dry friction, mixed lubrication and full film lubrication conditions, including of the contact pressure, film thickness, friction coefficient, liquid film pressure and viscous shear stress in the sealing zone. The proposed numerical fluid-solid interaction model can be effectively used to analyze the operation characteristics of the hydraulic reciprocating O-ring seal, and can also be widely used to study other hydraulic reciprocating seals.展开更多
Hydrostatic mechanical face seals for reactor coolant pumps are very important for the safety and reliability of pressurized-water reactor power plants.More accurate models on the operating mechanism of the seals are ...Hydrostatic mechanical face seals for reactor coolant pumps are very important for the safety and reliability of pressurized-water reactor power plants.More accurate models on the operating mechanism of the seals are needed to help improve their performance.The thermal fluid–solid interaction(TFSI)mechanism of the hydrostatic seal is investigated in this study.Numerical models of the flow field and seal assembly are developed.Based on the mechanism for the continuity condition of the physical quantities at the fluid–solid interface,an on-line numerical TFSI model for the hydrostatic mechanical seal is proposed using an iterative coupling method.Dynamic mesh technology is adopted to adapt to the changing boundary shape.Experiments were performed on a test rig using a full-size test seal to obtain the leakage rate as a function of the differential pressure.The effectiveness and accuracy of the TFSI model were verified by comparing the simulation results and experimental data.Using the TFSI model,the behavior of the seal is presented,including mechanical and thermal deformation,and the temperature field.The influences of the rotating speed and differential pressure of the sealing device on the temperature field,which occur widely in the actual use of the seal,are studied.This research proposes an on-line and assembly-based TFSI model for hydrostatic mechanical face seals,and the model is validated by full-sized experiments.展开更多
The characteristics of typical AE signals initiated by mechanical component damages are analyzed. Based on the extracting principle of acoustic emission(AE) signals from damaged components,the paper introduces Wigner ...The characteristics of typical AE signals initiated by mechanical component damages are analyzed. Based on the extracting principle of acoustic emission(AE) signals from damaged components,the paper introduces Wigner high-order spectra to the field of feature extraction and fault diagnosis of AE signals. Some main performances of Wigner binary spectra,Wigner triple spectra and Wigner-Ville distribution (WVD) are discussed,including of time-frequency resolution,energy accumulation,reduction of crossing items and noise elimination. Wigner triple spectra is employed to the fault diagnosis of rolling bearings with AE techniques. The fault features reading from experimental data analysis are clear,accurate and intuitionistic. The validity and accuracy of Wigner high-order spectra methods proposed agree quite well with simulation results. Simulation and research results indicate that wigner high-order spectra is quite useful for condition monitoring and fault diagnosis in conjunction with AE technique,and has very important research and application values in feature extraction and faults diagnosis based on AE signals due to mechanical component damages.展开更多
The studies on the mechanisms and performances of the mechanical seals in reactor coolant pumps are very important for the safe operations of the pressurized water reactor power plants. Based on the hydrostatic mechan...The studies on the mechanisms and performances of the mechanical seals in reactor coolant pumps are very important for the safe operations of the pressurized water reactor power plants. Based on the hydrostatic mechanical seal in reactor coolant pumps, an analytical fluid-solid strong-interaction model is proposed in this paper. According to the design features and operafional principles of the seal, an analytical method to calculate the mechanical deformation of the seal assembly is developed based on the ring deformation theory. A strong-interaction algorithm combining the analysis of the mechanical deformation of the seal assembly and flow field between the seal faceplates is utilized, in which the three kinds of equations including the fluid domain, solid domain and coupling action are constituted in the same equations set and all the variables are solved simul- taneously. So the analytical fluid-solid strong-interaction model used for the seal is built. Moreover, the model is verified by the experimental results. Based on the model, the design parameters of the seal are studied. Two different conditions of the general case and fixed seal leakage rate are discussed respectively, and the regularities that the seal behaviors are affected by the parameters of the holding screws on the clamp rings and seal faceplates are obtained. The research results can provide a theoretical basis for performance analysis, design and assemblage of the seal. Compared to the numerical methods, the proposed model has the unique advantages of high efficiency, convenience and easy application of constraints.展开更多
基金supported by National Basic Research Program of China(973 Program,Grant No. 2009CB724304)Key Research Program of the State Key Laboratory of Tribology of Tsinghua University,China (Grant No. SKLT08A06)National Natural Science Foundation of China(Grant No. 50975157)
文摘Elastohydrodynamic lubrication characteristics of hydraulic reciprocating seals have significant effects on sealing and tribology performances of hydraulic actuators, especially in high parameter hydraulic systems. Only elastic deformations of hydraulic reciprocating seals were discussed, and hydrodynamic effects were neglected in many studies. The physical process of the fluid-solid interaction effect did not be clearly presented in the existing fluid-solid interaction models for hydraulic reciprocating O-ring seals, and few of these models had been simultaneously validated through experiments. By exploring the physical process of the fluid-solid interaction effect of the hydraulic reciprocating O-ring seal, a numerical fluid-solid interaction model consisting of fluid lubrication, contact mechanics, asperity contact and elastic deformation analyses is constructed with an iterative procedure. With the SRV friction and wear tester, the experiments are performed to investigate the elastohydrodynamic lubrication characteristics of the O-ring seal. The regularity of the friction coefficient varying with the speed of reciprocating motion is obtained in the mixed lubrication condition. The experimental result is used to validate the fluid-solid interaction model. Based on the model, The elastohydrodynamic lubrication characteristics of the hydraulic reciprocating O-ring seal are presented respectively in the dry friction, mixed lubrication and full film lubrication conditions, including of the contact pressure, film thickness, friction coefficient, liquid film pressure and viscous shear stress in the sealing zone. The proposed numerical fluid-solid interaction model can be effectively used to analyze the operation characteristics of the hydraulic reciprocating O-ring seal, and can also be widely used to study other hydraulic reciprocating seals.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2009CB724304)National Key Technology R&D Program(Grant No.2011BAF09B05)National Natural Science Foundation of China(Grant No.50975157)
文摘Hydrostatic mechanical face seals for reactor coolant pumps are very important for the safety and reliability of pressurized-water reactor power plants.More accurate models on the operating mechanism of the seals are needed to help improve their performance.The thermal fluid–solid interaction(TFSI)mechanism of the hydrostatic seal is investigated in this study.Numerical models of the flow field and seal assembly are developed.Based on the mechanism for the continuity condition of the physical quantities at the fluid–solid interface,an on-line numerical TFSI model for the hydrostatic mechanical seal is proposed using an iterative coupling method.Dynamic mesh technology is adopted to adapt to the changing boundary shape.Experiments were performed on a test rig using a full-size test seal to obtain the leakage rate as a function of the differential pressure.The effectiveness and accuracy of the TFSI model were verified by comparing the simulation results and experimental data.Using the TFSI model,the behavior of the seal is presented,including mechanical and thermal deformation,and the temperature field.The influences of the rotating speed and differential pressure of the sealing device on the temperature field,which occur widely in the actual use of the seal,are studied.This research proposes an on-line and assembly-based TFSI model for hydrostatic mechanical face seals,and the model is validated by full-sized experiments.
基金Supported by the Project of Hunan Provincial Science and Technology Research (2007FJ3025)
文摘The characteristics of typical AE signals initiated by mechanical component damages are analyzed. Based on the extracting principle of acoustic emission(AE) signals from damaged components,the paper introduces Wigner high-order spectra to the field of feature extraction and fault diagnosis of AE signals. Some main performances of Wigner binary spectra,Wigner triple spectra and Wigner-Ville distribution (WVD) are discussed,including of time-frequency resolution,energy accumulation,reduction of crossing items and noise elimination. Wigner triple spectra is employed to the fault diagnosis of rolling bearings with AE techniques. The fault features reading from experimental data analysis are clear,accurate and intuitionistic. The validity and accuracy of Wigner high-order spectra methods proposed agree quite well with simulation results. Simulation and research results indicate that wigner high-order spectra is quite useful for condition monitoring and fault diagnosis in conjunction with AE technique,and has very important research and application values in feature extraction and faults diagnosis based on AE signals due to mechanical component damages.
基金supported by the National Basic Research Program of China(Grant No.2009CB724304)the Key Research Program of the State Key Laboratory of Tribology of Tsinghua University(Grant No.SKLT08A06)the National Natural Science Foundation of China(Grant No.50975157)
文摘The studies on the mechanisms and performances of the mechanical seals in reactor coolant pumps are very important for the safe operations of the pressurized water reactor power plants. Based on the hydrostatic mechanical seal in reactor coolant pumps, an analytical fluid-solid strong-interaction model is proposed in this paper. According to the design features and operafional principles of the seal, an analytical method to calculate the mechanical deformation of the seal assembly is developed based on the ring deformation theory. A strong-interaction algorithm combining the analysis of the mechanical deformation of the seal assembly and flow field between the seal faceplates is utilized, in which the three kinds of equations including the fluid domain, solid domain and coupling action are constituted in the same equations set and all the variables are solved simul- taneously. So the analytical fluid-solid strong-interaction model used for the seal is built. Moreover, the model is verified by the experimental results. Based on the model, the design parameters of the seal are studied. Two different conditions of the general case and fixed seal leakage rate are discussed respectively, and the regularities that the seal behaviors are affected by the parameters of the holding screws on the clamp rings and seal faceplates are obtained. The research results can provide a theoretical basis for performance analysis, design and assemblage of the seal. Compared to the numerical methods, the proposed model has the unique advantages of high efficiency, convenience and easy application of constraints.